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Trapped Fermi gases
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We study the properties of a spin-polarized Fermi gas in a harmonic trap, using the semic(@assinas-
Fermi approximation. Universal forms for the spatial and momentum distributions are calculated, and the
results compared with the corresponding properties of a dilute Bos¢ $fH350-294{@7)05306-1
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. INTRODUCTION 1 M w?
H(r,p)= 5p7 [Pt py+ 71+ —— DX +y?+\°77],

Trapped degenerate atomic gases provide exciting oppor- 1)
tunities for the manipulation and quantitative study of quan-
tum statistical effects, such as the strikingly direct observawherew, andw,=\ w, are the trap frequencies in the radial
tion of Bose-Einstein condensatiph—3]. Although perhaps and axial directions, respectively. The single-particle levels
not as dramatic as the phase transition associated withf Eq. (1) are familiar:
bosons, the behavior of trapped Fermi gases also merits at-

tention, both as a degenerate quantum system in its own right €n,,ny.n, = hiw [N+ ny+An,], (2
and as a possible precursor to a paired Fermi condensate at
lower temperaturef4]. wheren,, n,, andn, are non-negative integers, and the

The ideal Fermi gas is an old and well-understood probzero-point energy has been suppressed. In recent experiments
lem; there are many familiar systems where the noninteracwith trapped atomic gases, thermal energies far exceed the
ing Fermi gas is a good zeroth-order approximation. Unlikeevel spacing KgT>7% ). We may, therefore, replace this
electrons in atoms and metals, and nucleons in nuclei, howdiscrete single-particle spectrum with a continuum whose
ever, the trapped atomic gases of R¢ts-3] are dilute. The density of states is

effects of predominantly short-ranged atom-atom interac- 5

tions are therefore weak. For dilute, spin-polarized Fermi g(e)= € _ 3)

gases, thes-wave scattering amplitudavhich would domi- 2\ (ho,)?

nate the behavior of a comparable gas of distinguishable par-

ticles) vanishes due to the antisymmetry of the many- IIl. ENERGY AND LENGTH SCALES

fermion wave function. The next leading ordgr;wave ) ) o o

scattering is small at low energy, and can be neglefféd The chemical potentigk(T,N) is given implicitly by
At low temperatures, both the Bogé] and Fermi[7]

gases are expanded relative to a classical gas at the same N= g(e—)de (4)

temperature. For fermions, however, this effect is due to the eflemmi1”

Pauli exclusion principle rather than atom-atom interactions. o ) )
While in the Bose case a phase transition separates the ¢t Zero temperature the Fermi-Dirac occupation factor is
generate and classical regimes, a trapped Fermi gas undéln'E/ for energies less than the Fermi energy
goes a gradual crossover between the classical limit and tHer=#(T=0N), and zero otherwise. A straightforward in-
compact Fermi sea. tegration of Eq.(4) then giveq7]

Harmonic traps provide a particularly simple realization Ep=fio [6AN]Y )
of the confined Fermi system. In this paper we calculate the F r '

chemical potential, specific heat, and spatial and momentumynic sets the characteristic energy of the atomic cloud.
distributions of a harmonically trapped, spin-polarized, ideal The characteristic size of the trapped degenerate Fermi

Fermi gas. These properties are described by universal scgjasr_ s given by the excursion of a classical particle with
ing functions for any number of particles. We show that the; ;. energyEr in the trap potential 7];

observation of the spatial distribution of the trapped cloud

would provide an explicit visualization of a real-space Re=[2Eg /M w?]¥?= (48N\) Y60, (6)

“Fermi sea.”

where o, = (/M w,)Y? is the radial width of the Gaussian

ground state of the trap. For larde the width of the degen-

erate Fermi cloud is much greater than the quantum length
ConsidemN spin-polarized fermions of masg movingin  o,, and the Fermi energy is much greater than the level

an azimuthally symmetric harmonic potential, with a single-spacing of the trap, due to the Pauli exclusion induced ‘“re-

particle Hamiltonian pulsion” between fermions.

IIl. DENSITY OF STATES
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Similarly, we may define a characteristic wave number 1.0

Kg, which is determined by the momentum of a free particle

of energyEg: L T

—Exact Result
~—-|_ow T Approx.
~High T Approx.

Ke=[2MEg /72]¥2= (48NN ) Yo, 1, 7) 0.0

= (48NN/RE)R (8) ul
= -1.0
From Eq.(8) we see thaK is roughly the reciprocal of the Al
typical interparticle spacing in the gas.

As an example, consider spin-polariz&ti. The radial I
frequency of this fermionic isotope of lithium in the trap of 20}

Ref. [1] would be w, = 3800 sec!. The level spacing 0.00 oos om0 o075 100

fhiw, then corresponds to 30 nK, and the characteristic

ground-state lengtlr, is 1.6 um. The trap has an intrinsic KgT/E¢

axial-radial ration = \/8. ForN=10° atoms, the radiuR is

25 pm; the typical interparticle spacingK¢ is 100 nm. The FIG. 1. Chemical potential vs temperature. Both axes are scaled

Fermi temperature for this gas would be %X, a hundred by the Fermi energy, which results in a universal curve that applies
times greater than the level spacing. A back-of-the-envelope all harmonically trapped Fermi gases.
calculation confirms that the shift iBg due to interactions

can be neglectefb]. V. SEMICLASSICAL (THOMAS-FERMI )

APPROXIMATION

IV. CHEMICAL POTENTIAL AND SPECIFIC HEAT Since the exact eigenstates of the harmonic potential are
VS TEMPERATURE well known, the properties of a harmonically trapped ideal
. . gas can, in principle, be found directly by summing over
For general temperature, the chemical potentiahust be  {hese states. It is useful, however, to have approximate forms
determined numerically using EG4). We can find analytic  for yarious observables that can be computed directly in the
expressions, however, in the limits of high and low tempera1argeN limit, where the exact sums become unwieldy.

ture. For low temperaturekgT<Eg) the chemical potential In the “semiclassical” or Thomas-Fermi approximation
is given by the Sommerfeld expansion [9], the state of each atom is labeled by a positioand a
) ) wave vectok, which can be viewed as the centers of a wave
_ _m ke T packet state. The energy of the particle is simply the corre-
w(T,N)=E¢ 1 . 9 . e Pd . .
3\ Ee sponding value of the Hamiltonian; the density of states in

the six-dimensional phase spacek)) is (2m) 3, where
The third- and higher-order terms in the Sommerfeld seriesums over states are replaced by integrals over phase space.
vanish since the density of states is a quadratic function ofhese semiclassical approximations are valid in the limit of
energy. At high temperature@.e., in the classical limit largeN, as discussed in the Appendix.
kgT>Eg), we find In the semiclassical limit, the number density in phase
space is

: (10) _ 1 1
w(r,kT,u)= (2m)3 P FO-m 1

3
w(T,N)=—kgT In

ke T
G(L
Er

(11)

Numerical results fog.(T)/Eg are compared with these two

limiting forms in Fig. 1. Evidently the low-temperature ap- 3.0

proximation is quantitatively accurate beldT/E-~0.55,

while the classical expression holds for higher temperatures.
In Egs. (9) and (10), the particle numberN enters 2.0

w(T,N) only through the Fermi enerdy . This result holds

generally for all temperatures, as can be seen by casting Eq.

(4) in dimensionless form by scaling, w«, and 18 by E¢.

(The same conclusion holds for any density of states of the

form g(€)=Ae®, for constantA, b.) Figure 1 is therefore a 0.5

universal curve for harmonically trapped Fermi gases con-

taining any number of particles. T T T )
The specific heat per particle of the trapped Fermi[§as 0.00 0.25 0.50 0.75 1.00

is defined asCy=1/NJE/JT|y, whereE(T,N) is total in- kgT/EE

ternal energy of the gas. As seen in FigCg, is a monotonic

function of temperature. For low temperatures the specific FIG. 2. Heat capacity vs temperature. The heat capacity is

heat per particle isr’kg(kgT/Eg); as we approach the eq- scaled bykgN and the temperature . The classical result is

uipartition limit at high temperatur€y=3Nkg. shown by the dotted line.

2.5

C/NKg
2
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The chemical potential is given implicitly by the requirement

0.8
N=J’ d3r d3k w(r,k;T,u). (12 06
e °
It follows from the correspondence principle that the =
Thomas-Fermi calculation g&(T,N) using Eq.(12) repro- ~ 04
duces the exact result obtained from E4); this is easily MZ
confirmed for the harmonic oscillator, since the two integrals o 02
are related by a simple change of variables. ~
After computingu(T,N), it is straightforward to calculate
the spatial and momentum distribution functions 0.0 05 10 15 20
p/Re
()= [ dkwir kT ), 13
FIG. 3. Universal spatial and momentum density distributions
_ 5 for kgT/Eg=0 (bold), 0.25, 0.5, 0.75, and 1.0. The classical result
n(kJT):f d*r w(r,k;T,u). (14)  for kgT/Er=1 is shown as a dashed line.
VI. SPATIAL DISTRIBUTION AT ZERO TEMPERATURE Ti(k:T=0)= G )J d3r O (Ke(r)—|K]|), (19)
At zero temperature, we may define a “local” Fermi
wave numbekg(r) by where ® (ke(r)—|k|) is the unit step function. The integral
h2Ke(r)? (19 is the real-space volume within which the local Fermi
r
2Tv| V() =Eg, (15 wave vector exceed|
_ N 8 |k|2 3/2
where V(r) is the trap potential. The density(r) is then n(k;T=0)= w2 " KE| (20

simply the volume of the local Fermi sea linspace, multi-
plied by the density of states () 3

kF(r)3
6m°

where the maximum occupied wave numbgr was defined

in Eq. (7). Note thatke(r=0)=K.
(16) Despite the spatial anisotropy of the trap, the momentum
distribution of the degenerate Fermi gas is isotropic. This
isotropy is a general feature of trapped Fermi gases, indepen-
dent of the trap potentidll1], since from Eq.(19) we see

n(r;T=0)=

Note thatn(r) vanishes fop>Rg, wherep is the effective

distance thatn(k) depends only on the magnitude lof
Cry20 24y 2527102 The spatial and momentum distributio%8) and (20)
PEDCHY TN (7 both have the same functional form, beca#isis a quadratic
Combining Eqs(15) and (16), we obtain(for p<Rg) function of both position and momentum. In this sense, the
distribution(18) can be viewed as a Fermi sea in real space.
NA 8 p? 132 If the spring constants of the trap are unequal, ther) will
n(r;T=0)= R 1- R_E} : (18  be anisotropic. The momentum distributiaik), however,

is always isotropic due to the isotropy of mass. Thapﬁs.,
which has been derived elsewhéi®&10] by direct summa- py, and pZ enter the Hamiltonian with the same coefficient,
tion of harmonic-oscillator eigenstates. The cloud encomwhile x?, y2, andz? need not.

passes an ellipsoid with diameteRg in the x-y plane, and

diameter R /N along thez axis. This aspect ratio is the VIII. NUMERICAL RESULTS

same as that of a classical gas in the same potential, since the ) ) S _

Boltzmann distribution also depends only omp: In the semiclassical approximation, the spatial and mo-
Nejassicel T, T) ~ X —Mw?0%/2Kg T]. mentum distributions are easily determined numerically for

any temperature as described in Sec. V. As with the chemical
potential, an appropriate scaling of these two distributions
yields a universal form for all harmonically trapped Fermi
gases when plotted versus the scaled variaplés- and
One way to characterize the state of a trapped gas is ttk|/Kg, respectively.
allow a rapid adiabatic expansion and then measure the ve- Figure 3 shows the scaled density versus scaled distance
locity distribution by time-of-flight spectroscoyt]. For the  for kgT/Eg of 0, 0.25, 0.5, 0.75, and 1. At low temperatures,
degenerate Bose gas, the observed anisotropy of this velocitiie density is close to its zero-temperature f¢bold curve,
distribution is dramatic evidence for quantum statistical ef-Eq. (18), with a thin evaporated “atmosphere” of thickness
fects. The semiclassical momentum distribution for a degen=-Rg(kgT/Eg) surrounding a degenerate liquid “core.”
erate Fermi gas at zero temperature is simply In the classical limit, the density approaches a Gaussian in

VII. MOMENTUM DISTRIBUTION
AT ZERO TEMPERATURE
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X. COMPARISON WITH THE BOSE GAS

The interacting Bose gases of Rdf$] and[2] are in the
Thomas-Fermi regimgl2]. Since the gases remain dilute,
two-body scattering may be treated bydunction pseudo-
potential of strengthd =4=#2a/M, wherea is the s-wave
scattering length. When the dimensionless parameter
UN/(ﬁw)\of) is large(as is appropriate for the experiments
of Refs.[1] and [2]) the density profile of the interacting
Bose gas i$12]

0.0 : - : ! RE[  p?
0.25 0.50 0.75 1.00 Ng(r)= >0 1— =l (24)

B

kg T/E¢
with maximum radius
FIG. 4. The mean-square variation of the size of the cloud in-

terpolates between a low-temperature degenerate regime and a 15\UN\ 15

high-temperature limit that is well described by the equipartition B=< 7 ) (25
theorem. m

Note that the characteristic radius scales more slowly with
the particle number for the Fermi gadl{®) than for the
interacting Bose gasN*%); similarly, the Fermi energy
scales ad\*® while the zero-temperature chemical potential
of the Bose gas varies more rapidly, /48>,

The axial-radial aspect ratio for both classical and degen-
erate trapped gases is since in all three casegglassical,
Fermi, and Bosethe densities are functions pfonly. The
velocity (momentum distributions, however, can be quite
different. For classical and Fermi gases the velocity distribu-
ion is isotropic; for a zero-temperature Bose gas, however,
(k) is the square of the Fourier transform of the condensate
wave functionyng(r), which is anisotropic in an asymmet-
ric trap. Note that a®l increases, botRg andRg increase,
but the widths of the respectivmomentundistributions go
in opposite directionsK ¢ increases wittN, while the typical
momentum of a particle in a trapped Bose condensate de-
creases with particle number, sinkg~ 1/Rg by the uncer-
tainty principle.

IX. PERTURBATIONS It is amusing to compare the interatomic repulsion in a
~Bose gas with the effective repulsion experienced by fermi-
ons due to the Pauli exclusion princidl&€3]. Equating the
characteristic Fermi and Bose radh) and(25) we see that,
crudely speaking, the spatial distribution of a degenerate
Fermi gas is mimicked by that of a Bose gas interacting via
an effective “Pauli pseudopotential’U g4~ EF(REIN),
———[SEg—6V(r)], (21)  which is the characteristic energy multiplied by the volume
) per particle. Equivalently, the effective scattering length
brought about by the Pauli principle ifeﬁ~K;1, i.e., the
corresponding change in density is interparti_cle spacing(This is_, natural, s@nce the interpar'_ticle
spacing is the only appropriate length in the ideal Fermi)gas.
F( ) The use of such an effective interaction is limited by the fact
on(ry= ——— o [5EF SV(r)], (22)  that(a) the momentum distributions of the Fermi and Bose
gases remain quite different aflg) the gas is not dilute with

where the Fermi energy is adjusted to m@(k@rén(r) van- respec_t to the e>§clu3|on—|nduced interactions” since
ish Kraes is of order unity.

p (dashed curve with a width given by the equipartition
theorem:(p?)=3R2(kgT/Eg). As shown in Fig. 3, this ac—
curately describes the density distribution kyT/Eg=

The evolution of the density profile from its Iow—temperature
Fermi form(18) to the classical limit can be tracked by cal-
culating the mean-square excursigsf), which is shown in
Fig. 4 in the dimensionless forfp?)/RZ vskgT/Eg . This is
again a universal curve for all harmonically trapped Fermi
gases.

At all temperatures, the spatial and momentum distribu=.
tion have the same form, since momentum and position bot
enter the single-particle Hamiltonian quadratically. This was
seen explicitly for zero temperature in Eq48) and (20).
The scaled momentum distributid62n(k)/N vs |k|/Kg is
therefore also given by Fig. 3. Similarly, Fig. 4 also illus-
trates the scaled mean-square momentyk?)/K2 vs
kgT/Eg.

What happens if the potential is not perfectly harmonic?
We may treatéV(r) as a perturbation. Here we focus our
attention on theT =0 case. From Eq5), a change in trap
potential shifts the local Fermi wave number by

M
OKg(r)= 7ike(r

whereSEg is the change in Fermi energy. From Ef6), the
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APPENDIX: VALIDITY OF THE SEMICLASSICAL ticles in a quantum volume is SUfﬁCiently Iarge:

APPROXIMATION

r
. . o . n(rye®s—, A3
The semiclassical approximation can be safely applied to (e o (A3)

an inhomogeneous Fermi gas of densify) if we can imag-
ine partitioning the system into cells of linear dimension
such that the following two conditions are simultaneously
met.

whereo is as before the quantum length/(M w)*? and we
have omitted factors of order unity.
At low temperatures, the semiclassical density given by

3 N12) .3 .
(1) The number of particles in a cell is much greater tha Eﬂéﬁ:;-éé?ﬁfaagjézinaﬁon/g alr\:\?aa rstQSIfircl)%gi’st?a%ttgf the
unity, so that locally, the gas may be described by a Ferm PP way )
sea: center of the trap for larg®\. (This can be confirmed at

r=0 by direct summation of the squares of the simple
n(r)/3s1. (A1)  harmonic-oscillator eigenfunctions up to enerfgy.) Near

the periphery of the cloud, however, the density becomes

(2) The variation of the trap potential across the cellsmall, and the approximation fails. It is easy to show that the

(/VV) must be small compared with the local Fermi energysemiclassical treatment fails within a thin shell at the periph-
#%ke(r)2/2M, so that within a cell the potential energy is ery of the cloud, whose thicknegiR~ 1/Kg~ oN~ ¢ van-
nearly constant. At low temperature, this condition becomesshes in the limit of largeN. Within this shell only the ex-

ponential tails of a few single-particle states contribute to the

2 23 density; this is analogous to the corresponding region of the

[ n(r)]™ (A2) Bose gag14].

2

f
IM 2 <<
Mo r<2M
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