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Trapped Fermi gases
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We study the properties of a spin-polarized Fermi gas in a harmonic trap, using the semiclassical~Thomas-
Fermi! approximation. Universal forms for the spatial and momentum distributions are calculated, and the
results compared with the corresponding properties of a dilute Bose gas.@S1050-2947~97!05306-7#

PACS number~s!: 03.75.Fi, 05.30.Fk
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I. INTRODUCTION

Trapped degenerate atomic gases provide exciting op
tunities for the manipulation and quantitative study of qua
tum statistical effects, such as the strikingly direct obser
tion of Bose-Einstein condensation@1–3#. Although perhaps
not as dramatic as the phase transition associated
bosons, the behavior of trapped Fermi gases also merit
tention, both as a degenerate quantum system in its own
and as a possible precursor to a paired Fermi condensa
lower temperatures@4#.

The ideal Fermi gas is an old and well-understood pr
lem; there are many familiar systems where the noninter
ing Fermi gas is a good zeroth-order approximation. Unl
electrons in atoms and metals, and nucleons in nuclei, h
ever, the trapped atomic gases of Refs.@1–3# are dilute. The
effects of predominantly short-ranged atom-atom inter
tions are therefore weak. For dilute, spin-polarized Fe
gases, thes-wave scattering amplitude~which would domi-
nate the behavior of a comparable gas of distinguishable
ticles! vanishes due to the antisymmetry of the man
fermion wave function. The next leading order,p-wave
scattering is small at low energy, and can be neglected@5#.

At low temperatures, both the Bose@6# and Fermi@7#
gases are expanded relative to a classical gas at the
temperature. For fermions, however, this effect is due to
Pauli exclusion principle rather than atom-atom interactio
While in the Bose case a phase transition separates the
generate and classical regimes, a trapped Fermi gas un
goes a gradual crossover between the classical limit and
compact Fermi sea.

Harmonic traps provide a particularly simple realizati
of the confined Fermi system. In this paper we calculate
chemical potential, specific heat, and spatial and momen
distributions of a harmonically trapped, spin-polarized, id
Fermi gas. These properties are described by universal
ing functions for any number of particles. We show that t
observation of the spatial distribution of the trapped clo
would provide an explicit visualization of a real-spa
‘‘Fermi sea.’’

II. DENSITY OF STATES

ConsiderN spin-polarized fermions of massM moving in
an azimuthally symmetric harmonic potential, with a sing
particle Hamiltonian
551050-2947/97/55~6!/4346~5!/$10.00
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2

2
@x21y21l2z2#,

~1!

wherev r andvz5lv r are the trap frequencies in the radi
and axial directions, respectively. The single-particle lev
of Eq. ~1! are familiar:

enx ,ny ,nz5\v r@nx1ny1lnz#, ~2!

where nx , ny , and nz are non-negative integers, and th
zero-point energy has been suppressed. In recent experim
with trapped atomic gases, thermal energies far exceed
level spacing (kBT@\v). We may, therefore, replace thi
discrete single-particle spectrum with a continuum who
density of states is

g~e!5
e2

2l~\v r !
3 . ~3!

III. ENERGY AND LENGTH SCALES

The chemical potentialm(T,N) is given implicitly by

N5E g~e!de

eb~e2m!11
. ~4!

At zero temperature the Fermi-Dirac occupation factor
unity for energies less than the Fermi ener
EF[m(T50,N), and zero otherwise. A straightforward in
tegration of Eq.~4! then gives@7#

EF5\v r@6lN#1/3, ~5!

which sets the characteristic energy of the atomic cloud.
The characteristic size of the trapped degenerate Fe

gasRF is given by the excursion of a classical particle wi
total energyEF in the trap potential@7#:

RF[@2EF /Mv r
2#1/25~48Nl!1/6s r , ~6!

wheres r5(\/Mv r)
1/2 is the radial width of the Gaussia

ground state of the trap. For largeN, the width of the degen-
erate Fermi cloud is much greater than the quantum len
s r , and the Fermi energy is much greater than the le
spacing of the trap, due to the Pauli exclusion induced ‘‘
pulsion’’ between fermions.
4346 © 1997 The American Physical Society
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55 4347TRAPPED FERMI GASES
Similarly, we may define a characteristic wave numb
KF , which is determined by the momentum of a free parti
of energyEF:

KF[@2MEF /\
2#1/25~48Nl!1/6s r

21 , ~7!

5~48Nl/RF
3 !1/3. ~8!

From Eq.~8! we see thatKF is roughly the reciprocal of the
typical interparticle spacing in the gas.

As an example, consider spin-polarized6Li. The radial
frequency of this fermionic isotope of lithium in the trap
Ref. @1# would be v r 5 3800 sec21. The level spacing
\v r then corresponds to 30 nK, and the characteri
ground-state lengths r is 1.6mm. The trap has an intrinsic
axial-radial ratiol5A8. ForN5105 atoms, the radiusRF is
25mm; the typical interparticle spacing 1/KF is 100 nm. The
Fermi temperature for this gas would be 3.5mK, a hundred
times greater than the level spacing. A back-of-the-envel
calculation confirms that the shift inEF due to interactions
can be neglected@5#.

IV. CHEMICAL POTENTIAL AND SPECIFIC HEAT
VS TEMPERATURE

For general temperature, the chemical potentialm must be
determined numerically using Eq.~4!. We can find analytic
expressions, however, in the limits of high and low tempe
ture. For low temperature (kBT!EF) the chemical potentia
is given by the Sommerfeld expansion

m~T,N!5EFF12
p2

3 S kBTEF
D 2G . ~9!

The third- and higher-order terms in the Sommerfeld se
vanish since the density of states is a quadratic function
energy. At high temperatures~i.e., in the classical limit
kBT@EF), we find

m~T,N!52kBT lnF6S kBTEF
D 3G . ~10!

Numerical results form(T)/EF are compared with these tw
limiting forms in Fig. 1. Evidently the low-temperature a
proximation is quantitatively accurate belowkBT/EF;0.55,
while the classical expression holds for higher temperatu

In Eqs. ~9! and ~10!, the particle numberN enters
m(T,N) only through the Fermi energyEF . This result holds
generally for all temperatures, as can be seen by casting
~4! in dimensionless form by scalingE, m, and 1/b by EF .
~The same conclusion holds for any density of states of
form g(e)5Aeb, for constantA, b.! Figure 1 is therefore a
universal curve for harmonically trapped Fermi gases c
taining any number of particles.

The specific heat per particle of the trapped Fermi gas@8#
is defined asCN[1/N]E/]TuN , whereE(T,N) is total in-
ternal energy of the gas. As seen in Fig. 2,CN is a monotonic
function of temperature. For low temperatures the spec
heat per particle isp2kB(kBT/EF); as we approach the eq
uipartition limit at high temperatureCN53NkB .
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V. SEMICLASSICAL „THOMAS-FERMI …
APPROXIMATION

Since the exact eigenstates of the harmonic potential
well known, the properties of a harmonically trapped ide
gas can, in principle, be found directly by summing ov
these states. It is useful, however, to have approximate fo
for various observables that can be computed directly in
largeN limit, where the exact sums become unwieldy.

In the ‘‘semiclassical’’ or Thomas-Fermi approximatio
@9#, the state of each atom is labeled by a positionr and a
wave vectork, which can be viewed as the centers of a wa
packet state. The energy of the particle is simply the co
sponding value of the Hamiltonian; the density of states
the six-dimensional phase space (r ,k) is (2p)23, where
sums over states are replaced by integrals over phase s
These semiclassical approximations are valid in the limit
largeN, as discussed in the Appendix.

In the semiclassical limit, the number density in pha
space is

w~r ,k;T,m!5
1

~2p!3
1

eb„H~r ,\k!2m…11
. ~11!

FIG. 1. Chemical potential vs temperature. Both axes are sc
by the Fermi energy, which results in a universal curve that app
to all harmonically trapped Fermi gases.

FIG. 2. Heat capacity vs temperature. The heat capacity
scaled bykBN and the temperature byEF . The classical result is
shown by the dotted line.
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4348 55D. A. BUTTS AND D. S. ROKHSAR
The chemical potential is given implicitly by the requireme

N5E d3r d3k w~r ,k;T,m!. ~12!

It follows from the correspondence principle that t
Thomas-Fermi calculation ofm(T,N) using Eq.~12! repro-
duces the exact result obtained from Eq.~4!; this is easily
confirmed for the harmonic oscillator, since the two integr
are related by a simple change of variables.

After computingm(T,N), it is straightforward to calculate
the spatial and momentum distribution functions

n~r ;T!5E d3k w~r ,k;T,m!, ~13!

ñ~k;T!5E d3r w~r ,k;T,m!. ~14!

VI. SPATIAL DISTRIBUTION AT ZERO TEMPERATURE

At zero temperature, we may define a ‘‘local’’ Ferm
wave numberkF(r ) by

\2kF~r !2

2M
1V~r !5EF , ~15!

whereV(r ) is the trap potential. The densityn(r ) is then
simply the volume of the local Fermi sea ink space, multi-
plied by the density of states (2p)23

n~r ;T50!5
kF~r !3

6p2 . ~16!

Note thatn(r ) vanishes forr.RF , wherer is the effective
distance

r[@x21y21l2z2#1/2. ~17!

Combining Eqs.~15! and ~16!, we obtain~for r<RF)

n~r ;T50!5
Nl

RF
3

8

p2 F12
r2

RF
2 G3/2, ~18!

which has been derived elsewhere@7,10# by direct summa-
tion of harmonic-oscillator eigenstates. The cloud enco
passes an ellipsoid with diameter 2RF in the x-y plane, and
diameter 2RF /l along thez axis. This aspect ratio is th
same as that of a classical gas in the same potential, sinc
Boltzmann distribution also depends only onr:
nclassical(r ,T);exp@2Mv2r2/2kBT#.

VII. MOMENTUM DISTRIBUTION
AT ZERO TEMPERATURE

One way to characterize the state of a trapped gas i
allow a rapid adiabatic expansion and then measure the
locity distribution by time-of-flight spectroscopy@1#. For the
degenerate Bose gas, the observed anisotropy of this vel
distribution is dramatic evidence for quantum statistical
fects. The semiclassical momentum distribution for a deg
erate Fermi gas at zero temperature is simply
t

s

-

the

to
e-

ity
-
n-

ñ~k;T50!5
1

~2p!3
E d3r Q„kF~r !2uku…, ~19!

whereQ„kF(r )2uku… is the unit step function. The integra
~19! is the real-space volume within which the local Fer
wave vector exceedsuku

ñ~k;T50!5
N

KF
3

8

p2 F12
uku2

KF
2 G3/2, ~20!

where the maximum occupied wave numberKF was defined
in Eq. ~7!. Note thatkF(r50)5KF .

Despite the spatial anisotropy of the trap, the moment
distribution of the degenerate Fermi gas is isotropic. T
isotropy is a general feature of trapped Fermi gases, inde
dent of the trap potential@11#, since from Eq.~19! we see
that ñ(k) depends only on the magnitude ofk.

The spatial and momentum distributions~18! and ~20!
both have the same functional form, becauseH is a quadratic
function of both position and momentum. In this sense,
distribution~18! can be viewed as a Fermi sea in real spa
If the spring constants of the trap are unequal, thenn(r ) will
be anisotropic. The momentum distributionñ(k), however,
is always isotropic due to the isotropy of mass. That is,px

2 ,
py
2 , andpz

2 enter the Hamiltonian with the same coefficien
while x2, y2, andz2 need not.

VIII. NUMERICAL RESULTS

In the semiclassical approximation, the spatial and m
mentum distributions are easily determined numerically
any temperature as described in Sec. V. As with the chem
potential, an appropriate scaling of these two distributio
yields a universal form for all harmonically trapped Ferm
gases when plotted versus the scaled variablesr/RF and
uku/KF , respectively.

Figure 3 shows the scaled density versus scaled dista
for kBT/EF of 0, 0.25, 0.5, 0.75, and 1. At low temperature
the density is close to its zero-temperature form~bold curve!,
Eq. ~18!, with a thin evaporated ‘‘atmosphere’’ of thicknes
;RF(kBT/EF) surrounding a degenerate liquid ‘‘core.’’

In the classical limit, the density approaches a Gaussia

FIG. 3. Universal spatial and momentum density distributio
for kBT/EF50 ~bold!, 0.25, 0.5, 0.75, and 1.0. The classical res
for kBT/EF51 is shown as a dashed line.
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55 4349TRAPPED FERMI GASES
r ~dashed curve!, with a width given by the equipartition
theorem:̂ r2&53RF

2(kBT/EF). As shown in Fig. 3, this ac-
curately describes the density distribution forkBT/EF51.
The evolution of the density profile from its low-temperatu
Fermi form~18! to the classical limit can be tracked by ca
culating the mean-square excursion^r2&, which is shown in
Fig. 4 in the dimensionless form̂r2&/RF

2 vskBT/EF . This is
again a universal curve for all harmonically trapped Fer
gases.

At all temperatures, the spatial and momentum distri
tion have the same form, since momentum and position b
enter the single-particle Hamiltonian quadratically. This w
seen explicitly for zero temperature in Eqs.~18! and ~20!.
The scaled momentum distributionKF

3 ñ(k)/N vs uku/KF is
therefore also given by Fig. 3. Similarly, Fig. 4 also illu
trates the scaled mean-square momentum^k2&/KF

2 vs
kBT/EF .

IX. PERTURBATIONS

What happens if the potential is not perfectly harmon
We may treatdV(r ) as a perturbation. Here we focus o
attention on theT50 case. From Eq.~15!, a change in trap
potential shifts the local Fermi wave number by

dkF~r !5
M

\kF~r !
@dEF2dV~r !#, ~21!

wheredEF is the change in Fermi energy. From Eq.~16!, the
corresponding change in density is

dn~r !5
MkF~r !

2p2\
@dEF2dV~r !#, ~22!

where the Fermi energy is adjusted to make*d3rdn(r ) van-
ish

dEF5

E d3r dV~r !kF~r !

E d3r kF~r !
. ~23!

FIG. 4. The mean-square variation of the size of the cloud
terpolates between a low-temperature degenerate regime a
high-temperature limit that is well described by the equipartit
theorem.
i
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X. COMPARISON WITH THE BOSE GAS

The interacting Bose gases of Refs.@1# and@2# are in the
Thomas-Fermi regime@12#. Since the gases remain dilut
two-body scattering may be treated by ad-function pseudo-
potential of strengthU54p\2a/M , wherea is the s-wave
scattering length. When the dimensionless param
UN/(\vls r

3) is large~as is appropriate for the experimen
of Refs. @1# and @2#! the density profile of the interacting
Bose gas is@12#

nB~r !5
RB
2

2UF12
r2

RB
2 G , ~24!

with maximum radius

RB5S 15lUN4p D 1/5. ~25!

Note that the characteristic radius scales more slowly w
the particle number for the Fermi gas (N1/6) than for the
interacting Bose gas (N1/5); similarly, the Fermi energy
scales asN1/3 while the zero-temperature chemical potent
of the Bose gas varies more rapidly, asN2/5.

The axial-radial aspect ratio for both classical and deg
erate trapped gases isl, since in all three cases~classical,
Fermi, and Bose! the densities are functions ofr only. The
velocity ~momentum! distributions, however, can be quit
different. For classical and Fermi gases the velocity distri
tion is isotropic; for a zero-temperature Bose gas, howe
ñ(k) is the square of the Fourier transform of the condens
wave functionAnB(r ), which is anisotropic in an asymme
ric trap. Note that asN increases, bothRF andRB increase,
but the widths of the respectivemomentumdistributions go
in opposite directions:KF increases withN, while the typical
momentum of a particle in a trapped Bose condensate
creases with particle number, sinceKB;1/RB by the uncer-
tainty principle.

It is amusing to compare the interatomic repulsion in
Bose gas with the effective repulsion experienced by fer
ons due to the Pauli exclusion principle@13#. Equating the
characteristic Fermi and Bose radii~6! and~25! we see that,
crudely speaking, the spatial distribution of a degener
Fermi gas is mimicked by that of a Bose gas interacting
an effective ‘‘Pauli pseudopotential’’Ueff;EF(RF

3/N),
which is the characteristic energy multiplied by the volum
per particle. Equivalently, the effective scattering leng
brought about by the Pauli principle isaeff;KF

21 , i.e., the
interparticle spacing.~This is natural, since the interparticl
spacing is the only appropriate length in the ideal Fermi ga!
The use of such an effective interaction is limited by the f
that ~a! the momentum distributions of the Fermi and Bo
gases remain quite different and~b! the gas is not dilute with
respect to the exclusion-induced ‘‘interactions’’ sin
KFaeff is of order unity.
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APPENDIX: VALIDITY OF THE SEMICLASSICAL
APPROXIMATION

The semiclassical approximation can be safely applied
an inhomogeneous Fermi gas of densityn(r ) if we can imag-
ine partitioning the system into cells of linear dimensionl
such that the following two conditions are simultaneou
met.

~1! The number of particles in a cell is much greater th
unity, so that locally, the gas may be described by a Fe
sea:

n~r !l 3@1. ~A1!

~2! The variation of the trap potential across the c
(l ¹V) must be small compared with the local Fermi ener
\2kF(r )

2/2M , so that within a cell the potential energy
nearly constant. At low temperature, this condition becom

l Mv2r!
\2

2M
@6p2n~r !#2/3, ~A2!
an
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where we have used Eq.~16!.
Combining Eqs.~A1! and ~A2!, we see that one can

choose a~possibly r dependent! cell size l that simulta-
neously satisfies these two conditions if the number of p
ticles in a quantum volume is sufficiently large:

n~r !s3@
r

s
, ~A3!

wheres is as before the quantum length (\/Mv)1/2 and we
have omitted factors of order unity.

At low temperatures, the semiclassical density given
Eq. ~18! scales asN/RF

3;N1/2/s3 near the origin, so the
Thomas-Fermi approximation is always self-consistent at
center of the trap for largeN. ~This can be confirmed a
r50 by direct summation of the squares of the simp
harmonic-oscillator eigenfunctions up to energyEF .) Near
the periphery of the cloud, however, the density becom
small, and the approximation fails. It is easy to show that
semiclassical treatment fails within a thin shell at the perip
ery of the cloud, whose thicknessdR; 1/KF; sN21/6 van-
ishes in the limit of largeN. Within this shell only the ex-
ponential tails of a few single-particle states contribute to
density; this is analogous to the corresponding region of
Bose gas@14#.
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