
  

Supplemental #1: Calculation of LGN receptive fields and temporal scales 
[Accompanying Butts et al. (2007)] 
 

 To draw a direct comparison between the relevant stimulus and response time scales, we must first 

consider how the visual pathway processes stimuli.  A neuron’s receptive field represents how visual 

stimuli are integrated spatially and temporally, and embodies the location and timing of visual stimuli to 

which the neuron responds (Reid et al., 1997).  As we demonstrate below, filtering by the receptive field 

determines what aspects of the stimulus are represented by the neuron, and in doing so provides a temporal 

signal that can be directly compared to the time course of the neuronal response.  In this way, “relative 

precision” is a comparison between the functional time scales of stimulus processing and those in the 

neuronal response. 

 

Calculation of the neuron’s spatiotemporal receptive field 

 Though historically the term receptive field only referred to spatial aspects of visual stimuli that a 

neuron responds to, the spatiotemporal receptive field (STRF) describes both spatial and temporal elements 

of the stimuli that evoke neuronal spikes (Reid et al., 1997; Chichilnisky, 2001).  Because the main text of 

this paper focuses on the relationship between the temporal dynamics of the stimulus and response, here we 

provide examples of the temporal components of the receptive field (Figs. S1-1 and S1-2) 

 We calculate STRFs using standard techniques (Reid et al., 1997; Chichilnisky, 2001); for the data 

presented in the main text, we recorded spikes over five minutes during the presentation of binary white 

noise stimuli, consisting of frames of uncorrelated dark or light pixels updated at 60 Hz.  In this condition, 

the STRF is simply the average stimulus that evokes a spike, and Fig. S1-1 demonstrates an example 

typical of an LGN X-cell.  The spatial location of the non-zero portion of the receptive field is shown in 

Fig. S1-1A. [To avoid introducing noise into our model estimates using this receptive field, we assume the 

receptive field outside of a three-pixel radius from its center (given by the largest value of the spike-

triggered average stimulus), demonstrated by the outer blue circle shown.]   

 Fig. S1-1B shows the temporal kernels at two spatial locations: in the center (red), and surround 

(blue). The STRF thus demonstrates the spatial location of stimuli that the neuron responds to (Fig. S1-1A) 

and their temporal characteristics (Fig. S1-1B). [For demonstration purposes, this example STRF was 

mapped using significantly more data, though doing such does not affect the results that are presented.] 
  

 
 

 

Fig. S1-1: The spatiotemporal receptive field of an LGN X-cell mapped with binary spatiotemporal noise.  

Red: excitatory, blue: suppressive.  A. Spatial map of the average stimulus 40 ms preceding spikes, with an 

example frame of the noise stimulus superimposed.  Scale bar is 1º.  B. Temporal filter at the center of the 

receptive field (red) and 0.4º outside center (blue).  
 

 Note that we used binary spatiotemporal noise instead of natural movies to map the STRF because 

natural movies have complex spatiotemporal correlations and require more data to map in this way.  Thus, 

for simplicity, we adjusted the contrast of the noise stimulus to evoke the same overall firing rate; the subtle 

differences previously described between receptive fields mapped with natural-movie and white-noise 

stimuli (Sharpee et al., 2006) are not expected to result in any substantial differences in the measures of 

precision used in this paper, and the RF predictions from this method (e.g., Fig. 1d) provide reasonable fits. 
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Calculation of the neuron’s temporal receptive field in spatially uniform noise (SUN) 
 

 In the context of a spatially uniform noise (SUN) visual stimulus, the receptive field only 

describes how stimuli are processed temporally, and has no spatial component.  The receptive field of the 

same neuron in the context of the SUN stimulus (Fig. S1-2, solid line) has a shorter latency and narrower 

temporal profile compared to the temporal filter of the neuron at the receptive field center in the 

spatiotemporal context (dashed red line).  This is likely due to the fact that the suppressive surround is 

delayed relative to that of the center (Fig. S1-1B, blue line) (Enroth-Cugell et al., 1983; Sakai and Naka, 

1995; Meister and Berry, 1999).  Because spatially uniform stimuli activate them simultaneously, the 

opposite-signed surround suppresses the later part of the center response, leading to a faster and less 

prolonged temporal filter (Fig. S1-2, black solid line). 

 
 

Fig. S1-2: The temporal receptive field of the same X-cell mapped with SUN stimuli (black), compared with 

the temporal filter at the center of the spatiotemporal receptive field (dashed red). 
 

Generation of response predictions through a receptive-field-based model 

 Since the receptive field represents the average stimulus a neuron responds to, it can be used to 

predict when the neuron will respond: i.e., when the stimulus matches the neuron’s receptive field.  This 

can be mathematically represented as the “filtered stimulus” g(t), given by: 
 

g(t) = d k( ) s(t )  

 

where s(t) is the stimulus and k( ) is the neuron’s receptive field (pictured above with  representing the 

time preceding the spike).  Processing of the stimulus by the receptive field results in the filtered stimulus, 

and is shown for the “realistic model” neuron example below (Fig. S1-3). 
 

 

Fig. S1-3: Generation of the RF-based prediction. Top: The temporal receptive field matches the stimulus (an 

OFF to ON transition) at t = 180 ms, resulting in a large value of the filtered stimulus at that time.  Middle: The 

time course of the filtered stimulus demonstrates how long a relevant stimulus is in the neuron’s receptive field.  

The filtered stimulus can be mapped to a firing rate through a measured non-linearity (threshold: dashed line).  

Bottom: The resulting RF prediction (dashed red line) inherits the time course of the filtered stimulus, and 

cannot capture the finer temporal features of the neuron’s response (black line). 
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 The filtered stimulus can be directly mapped to a firing rate through a measured static non-

linearity (Chichilnisky, 2001), resulting in the “RF prediction” of Figure S1-3 (bottom).  These two stages 

of processing, the linear processing resulting in the filtered stimulus followed by a mapping to a firing rate 

by a non-linearity, comprise the canonical “LN (linear-non-linear) model” of visual neurons. 

 

Precision as a comparison of time scales between the filtered stimulus and the response 

 Importantly, since g(t) designates when stimuli are present that drive the neuron to fire, its time 

course provides a basis for evaluating whether the neuron’s response is precise relative to the stimuli it 

encodes.  [Note that the RF prediction inherits this time course.]  To quantitatively compare the filtered 

stimulus and response (and predicted response) time scales, we compare their autocorrelation functions, 

shown for an example LGN neuron in the context of SUN (Fig. S1-4). 
 

 
 

Fig. S1-4: Quantitative comparison of filtered stimulus and response time scales.  A. A 500 ms time course 

of the filtered stimulus g(t) (blue), PSTH (t) (black), and RF prediction (red) for the LGN X-cell during full-

field stimuli. B. The corresponding autocorrelation functions of each (solid lines), with the corresponding 

Gaussian fit to their top portion (dashed lines). 
 

The autocorrelation functions clearly demonstrate the remarkable difference between filtered stimulus and 

PSTH time scales, since the correlation function of the PSTH falls off in less than a third of the time.  [It 

also illustrates the similarity in the time scales of the filtered stimulus and RF prediction, demonstrating the 

negligible effect of rectification on this measure.] 

 To associate a single number with the time scale of the autocorrelation function, consider first a 

completely “precise” neuron.  In this case, spikes will occur at the exact same time on every trial, and its 

PSTH will be comprised of a series of -functions.  However, in general, trial-to-trial variability leads to 

temporal “jitter”, which might be approximated (to first order) in the PSTH as a convolution of the series of 

delta functions with a Gaussian function that has a standard deviation j. 

 In the limit that each spike is spaced far apart relative to the width of the Gaussian jitter, the 

resulting autocorrelation function C( ) can be computed analytically, and is proportional to: 
 

C( ) dt (t) (t ) dt e t 2 / 2 j
2

e (t )2 / 2 j
2

e
2 / 4 j

2

 

 

This itself is a Gaussian with standard deviation j 2. 

 In this way, from the autocorrelation function we can infer the average jitter j of the PSTH (note 

that as we define it, the “time scale” of the response R is twice the jitter, equal to the full width of the 

PSTH event): R = 2 j is the autocorrelation lag at which the Gaussian has a height of 1/e.  For spikes that 

are closer together, the autocorrelation function will also reflect correlations between spikes, but the shape 

near the origin (at small correlation lag times) will still be dominated by the isolated spike events, and is 

thus well-described by a Gaussian. 

 We therefore fit the top portion of the autocorrelation function with a Gaussian (Fig. S1-4B, 

dashed lines), and from this fit estimate the response time scale.  This provides a direct means for 

comparing the time scale of the continuous filtered stimulus with that of the neuronal response, and relating 

these measures to more conventional measures of neural precision such as jitter. 
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ADDITIONAL METHODS 
 

Experimental Procedures.  Please note that the surgical and experimental preparations used for this study 

have been described in detail previously (Weng et al., 2004). 

 

The visual stimuli.  The LGN neurons were studied under both spatially uniform noise (SUN) and natural 

movie conditions.  SUN stimuli consisted of spatially uniform luminances randomly selected from a 

Gaussian distribution with zero mean (corresponding to the midway point of the full range of monitor 

luminance) and an RMS contrast of 0.55, presented at 120 Hz. 

 The naturalistic movie sequence was recorded by members of the laboratory of Peter König 

(Institute of Neuroinformatics, ETH/UNI Zürich, Switzerland) using a removable lightweight CCD-camera 

mounted to the head of a freely roaming cat in natural environments such as grassland and forest (Kayser et 

al., 2003).  A 48 48 windowed area of this movie was temporally upsampled from 30 Hz to 60 Hz using 

commercial software (MotionPerfect, Dynapel Systems, New York) and normalized to have a constant 

mean and standard deviation of luminance for each frame (contrast held at 0.4 of maximum), as described 

in detail in (Lesica et al., 2006).  For straightforward receptive field mapping using spike-triggered average 

techniques, a five-minute spatiotemporal binary noise sequence was also presented to each cell with the 

same spatial resolution and 0.55 contrast (see above).  All stimuli were displayed on a CRT display at a 

resolution of 0.2° per pixel with a monitor refresh rate of 120 Hz. 
 

Response Events and Smoothing of the PSTH.  The peri-stimulus time histogram (PSTH) is used to 

estimate response time scales and single spike information, and when measured from recorded data (main 

text, Figs. 1a,b) was estimated from 60 or 120 repeated trials.  The PSTH in the context of both SUN and 

natural movie stimuli was easily divided into individual response events, where each event boundary was 

determined by more than 5 ms of zero firing rate in the PSTH.   

 Though the number of repeated stimulus trials was enough to distinguish PSTH features of the 

response by eye, calculations of the response time scales (described above) required smoothing at the finer 

time resolutions.  This was performed using Bayesian adaptive regression splines (BARS) (Kass et al., 

2003), which captures both fast changes in firing rate as well as smooth regions of the PSTH that have 

statistically insignificant fluctuations.  These methods were compared to several other types of smoothing 

(including a method invented by the authors), and while it produced a better estimate of the PSTH, did not 

significantly change the results presented. 
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Supplemental #2: The change in temporal scales of the response with stimulus class 
[Accompanying Butts et al. (2007)] 

 

 

Temporal scales of the neural response  

 Our manuscript demonstrates that relevant time scales of the neuronal response are not fixed, but 

depend on the temporal structure of the input.  Figure S2-1 demonstrates a significant change in several 

measures of the temporal scale of the neural response: the first-spike jitter (Fig. S2-1A), the total jitter (Fig. 

S2-1B), and the response time scale (Fig. S2-1C), focused on in the main text.  Comparing these measures 

here demonstrates that the observed difference in response time scales from spatially uniform noise (SUN) 

to natural movie stimuli is a general feature not limited to any one measure of temporal scale. 

 

 
 

Figure S2-1: Multiple response time scales change dramatically with different types of dynamic stimuli.  

A.  The change in average first-spike jitter of each neuron in the context of SUN stimuli (horizontal axis) and 

natural movies (vertical axis).  The first-spike jitter is defined as the standard deviation of the first-spike of a 

given event across stimulus repeats; the average weights each event by the number of trials where at least one 

spike occurred in that event.  The dashed line represents the average change, which is 1.9-fold for X-cells and 

3.3-fold for Y-cells.  B. The change in total jitter for each cell in the two stimulus types, defined as the 

standard deviation of all spikes in the event across stimulus repeats, where the average now weights each 

event by the total number of spikes in the event.  Here, the average change (dashed line) is 2.3-fold (X-cells) 

and 3.8-fold (Y-cells). (A) and (B) depend on dividing up the neural response into “events”, which are easily 

delineated by a contiguous period (> 5 ms) of zero spike-rate in the PSTH.  C.  The change in response time 

scale across neurons (average 2.8-fold and 3.6-fold for X- and Y-cells, respectively), derived from the 

autocorrelation time of the response PSTH, as described at length in Supplemental #1.  

 

 

Event-by-event measures of temporal scale 

 The dependence of response time scale on the time scales of the stimulus can also be observed on 

an event-by-event basis in the context of a single stimulus type.  For example, the SUN stimulus considered 

in the main text is constructed from sequences of randomly drawn luminance values, and as a result 

contains ‘stimulus features’ at many different time scales over the course of a single trial.  The neuron 

responds when the stimulus matches the receptive field (i.e., where the filtered stimulus is above threshold, 

Fig. S2-2A), and as a result, the properties of these above-threshold excursions vary from event to event 

over the course of the experiment, and will co-vary with the relevant properties of the associated neuronal 

response.  

 We first look at the relationship between the duration above threshold of the filtered stimulus and 

the duration of the neuronal response (time between first spike in the event and last spike).  There were 139 

separate response events generated by a typical LGN neuron over a 10 second SUN stimulus presentation 

(Fig. S2-2B).  The duration of the response is less than the time above threshold of the filtered stimulus, 

and the average ratio between them is 3.0 (blue dashed line), similar to the measurement of relative 

precision between stimulus and response time scales in the main text (though there is significant variability 

from event to event). 
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Figure S2-2: Relationship between stimulus and response time scales preserved on an event-by-event 

level.  A.  The filtered stimulus above threshold (i.e., RF prediction, see Suppl. #1) and PSTH of a typical 

LGN neuron are shown, demonstrating how above-threshold features of the filtered stimulus (FS, dashed red) 

can be associated with response events (solid black), to measure the relationship between properties of each.  

B.  In particular, over the 139 events of a 10 second SUN stimulus, the duration above threshold of the FS 

(horizontal axis) is on average 3.0 times longer than the duration of the associated response (vertical axis): 

this ratio is shown as a blue dashed line.   
 

 

 The correlation coefficient (CC) is a simple measure of the relationship between filtered stimulus 

(FS) feature and response event durations.  The CC = 0.36 between FS and response duration for the 

neuron considered in this example.  Likewise, the correlation between other measures of stimulus time 

scale is of similar magnitude in this example: CC = 0.30 between the FS duration and total response jitter, 

and CC = 0.30 between the FS duration and first-spike jitter.    

 This can be compared to other aspects of the FS features that may be related to response time 

scales (Fig. S2-3A).  In particular, the amplitude of the filtered stimulus feature is related to how well a 

given stimulus matches the neuron’s receptive field, and the slope at threshold is related to how quickly 

such a feature is integrated.  However, these other properties, though correlated with FS duration, are not 

nearly as predictive of the temporal properties of the response.  Figure S2-3B shows the average correlation 

coefficient between each of these other parameters and temporal features of the response. 

 

 

 
 

Figure S2-3: Relationship between response time scales and other filtered stimulus properties.  A.  An 

illustration of other properties of above-threshold features of the filtered stimulus that may be related to 

response precision.  B.  The average correlation coefficient across LGN neurons between properties of the FS 

and measures of response time scale (n = 20). 
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 Such a result is in contrast to an explanation for precision in the context of an in vitro cortical 

neuron responding to a dynamically varying injected current (Mainen and Sejnowski, 1995).  In this 

condition, the slope at threshold crossing was the largest determinant of neural precision (see Suppl. #3).  

Clearly, such results do not map to the more abstract functional relationship between the presented stimulus 

filtered by a receptive field and a direct injected current.  [Furthermore, they found neural precision only 

changed by roughly a factor of two despite a 25-fold change in the time scale of the injected current, as 

discussed in Suppl. #3.]  Rather, precision in neurons in the early visual system likely arises from the 

suppression of the response following its onset (e.g., Berry and Meister, 1998), and is the subject of much 

current modeling (see Suppl. #3).  
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Supplemental #3: Exploring the source of temporal precision in common 

phenomenological models 
[Accompanying Butts et al., 2007] 

 

 The biophysical properties of LGN neurons, as well as the upstream retinal network responsible 

for their responses to visual stimuli, are quite complex and not entirely understood.  Nevertheless, there is a 

wide range of “phenomenological” visual neuron models designed to capture certain response properties to 

certain classes of visual stimuli.  The most ubiquitous visual system model is the receptive-field-based (or 

Linear-Non-Linear “LN”) model described in the main text, which characterizes the complex 

spatiotemporal processing of the retina with a single linear filter, and can mostly capture the overall 

magnitude and coarse timing of LGN responses, despite not being able to reproduce their fine temporal 

structure (main text, Fig. 1).  More complicated models have been built with this receptive-field-based 

framework as a foundation to capture higher-order features of the neuronal response: some approximate the 

contribution of different retinal cell classes in order to understand spatiotemporal stimulus interactions 

(Korenberg et al., 1989; Sakai and Naka, 1995; Snippe et al., 2000), others focus on capturing how the 

response changes with different luminance and contrast levels (Shapley and Victor, 1979; Chander and 

Chichilnisky, 2001; Bonin et al., 2005; Mante et al., 2005), and others approximate aspects of the spike 

generation process more accurately (Brillinger, 1992; Mainen and Sejnowski, 1995; Berry and Meister, 

1998; Keat et al., 2001; Paninski, 2004; Paninski et al., 2004).  Each model is able to capture certain 

aspects of the neural response to certain types of stimuli, but the ability to fit the responses in complex 

stimulus environments such as natural scenes is still elusive and likely involves a combination of all these 

different aspects (Meister and Berry, 1999; Carandini et al., 2005).  

 

Threshold-crossing models of precision 

 Several types of phenomenological models address how temporal aspects of the neuronal response 

are generated, directly or indirectly.  In particular, the spike generation mechanism itself is commonly 

thought to underlie the temporal precision of neuronal responses (Mainen and Sejnowski, 1995), and is the 

basis of several “threshold-crossing” models of visual neurons (Keat et al., 2001; Paninski et al., 2004).  

Such a model generates precisely-timed spikes when an internal variable (often thought of as the membrane 

potential) crosses a threshold (Fig. S3-1A).  Intrinsic noise can change the precise timing of the threshold 

crossing, resulting in temporal jitter.  The magnitude of jitter (and resulting time scale of the neural 

response) therefore depends on the magnitude of the slope of the potential relative to the magnitude of the 

noise: a lower slope translates into more temporal jitter for the same noise level (Fig. S3-1A).  Such a 

model could potentially predict the existence of relative precision, since stretching the time scale of the 

stimulus (while holding the amplitude constant) will proportionally decrease the slope of the filtered 

stimulus, and increase the temporal jitter in the neuronal response. 

 

 
 

Fig S3-1: Threshold-crossing model of precision.  A. Illustration of how temporal jitter is generated in a 

threshold-crossing model.  B. Correlation between various elements of the filtered stimulus (amplitude, slope, 

duration) and the response time scales demonstrates that slope at threshold is not a good predictor of the 

temporal jitter in LGN data relative to filtered stimulus duration, reproducing Supplemental Figure S2-3. 
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 However, as demonstrated in Supplemental #2 (reproduced as Fig. S3-1B), such a relationship 

between threshold-crossing-slope and response duration is not supported by our observations.  On an event-

by-event basis, the slope of the filtered stimulus at threshold does not predict either the level of precision of 

the first spike, nor the temporal structure in the response overall.  Furthermore, while Mainen and 

Sejnowski (1995) found a strong relationship between the slope of the current injected directly into cortical 

neurons in vitro and their precision, even in that study the relationship between slope and precision does 

not hold up quantitatively across different stimulus time scales: a 25-fold change in the time scale of the 

injected current (which would result in an 25-fold decrease in the average slope at threshold), only results 

in at most a 2-fold change in response time scales. 

 The lack of applicability of the threshold-crossing model for precision to the LGN is also 

supported by another experimental manipulation that we performed.  We presented the natural movie 

stimulus at two different contrasts: “high contrast” (0.40) described in the main body of the paper, and low 

contrast (0.15).  While these experiments are part of a future study on the effects of contrast on coding in 

the LGN, we bring up these data in this context because it is an experimental manipulation that also affects 

the ratio of the slope of the signal to that of the putative “noise” in the system: while the noise is thought to 

remain roughly constant as a function of contrast (Passaglia and Troy, 2004), the magnitude (and slope) of 

the filtered stimulus will be reduced 2.7-fold.  Thus, we would expect to see a 2.7-fold decrease in 

precision if the threshold-crossing model of precision were to apply.  However, our preliminary results 

indicate that the level of relative precision of the LGN neuron is approximately maintained in the natural 

movies for the 2.7-fold decrease in contrast (not shown).  Though the response time scale does increase, the 

time scale of the filtered stimulus also increases, as the receptive field becomes temporally broader 

(Shapley and Victor, 1978).  Of course, our measure of precision breaks down for low enough contrast, as 

spurious spikes increasingly dominate the spike train.  The dependence of the precision on contrast is part 

of this future study. 

 

Refractory and “suppressive” models of precision 

 Another phenomenological explanation for precision is neural “refractoriness” (Berry and Meister, 

1998), corresponding to a decreased probability of spiking immediately following a neural spike. Neural 

refractoriness could explain the observed precision if spiking were to suppress subsequent spiking for the 

duration of the filtered stimulus event (approximately 15 ms in the case of SUN, Fig. S3-2A).  Such 

suppression is significantly longer than the “absolute refractory period” linked to the biophysical properties 

of action potential generation, and as a result has been referred to as a “relative refractory period” (Berry 

and Meister, 1998; Reinagel and Reid, 2000), “recovery function” (Brillinger, 1992), or “spike-history 

term” (Paninski, 2004) and is the subject of current modeling efforts, including those by the authors of this 

manuscript (Butts et al., 2007). 

 

 
Fig S3-2: Refractory-based models of precision.  A. Illustration of how refractoriness leads to neural 

precision.  B. Proposed “phenomenological” model to explain precision in multiple stimulus contexts. The 

dashed red box demonstrates a simpler model with a spike-history term that can explain some elements of 

neural precision in the context of SUN (Paninski, 2004), but cannot quantitatively reproduce precision in 

natural movies. 

 

 Unfortunately, similar to most previous studies of neural precision, modern models of RGCs and 

LGN neurons have only been validated for a single class of stimuli – the spatially uniform noise (SUN) 
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considered in the main text – and none claim to be valid for other classes.  For example, the “realistic 

neuron model” considered in the main text was specifically designed to reproduce the trial-to-trial 

variability of RGC and LGN neurons in the context of SUN (Keat et al., 2001), but has not been extended 

to capture more complicated interactions needed to predict responses to spatiotemporal (not just temporal) 

stimuli (Korenberg et al., 1989; Sakai and Naka, 1995; Meister and Berry, 1999; Bonin et al., 2005).  

Likewise, these models that are designed to capture these more complicated interactions have not been 

extended to spiking models and likewise cannot incorporate spike-dependent effects. 

 In preliminary (unpublished) analyses of hybrid models that may approximate crucial elements of 

retinal processing and spike generation (Butts et al., 2007), we have found that the “relative refractory” 

explanation for precision in the context of SUN breaks down in spatiotemporal stimuli where spiking is 

driven by more complicated spatiotemporal interactions.  We find that it is necessary to include feed-

forward suppression – not tied to neuronal spikes – in order to explain precision in the context of 

spatiotemporal stimuli (see Fig. S3-3B).  Note that such suppression can result in an apparent “relative 

refractory period” in the context of SUN stimuli (but not natural movies), highlighting the importance of 

studying multiple stimulus contexts in describing neural precision.   

 In this way, the presence of relative precision that we report in the main text offers a significant 

experimental constraint for current state-of-the-art models, which have typically only been tested in 

isolated stimulus contexts. 

 

Implications for different types of stimulus 

 The mechanism underlying precision will likely have implications for other aspects of stimulus 

processing.  Our modeling work suggests that precision arises from suppressive mechanisms in the retina 

that have particular spatiotemporal tuning to the stimulus as well (with spatial tuning similar to the 

neuron’s surround) – consistent with a recent study of the spatial components of contrast gain control 

(Bonin et al., 2005).  If this were the case, one would expect that the degree (and even presence) of relative 

precision could be modulated by stimuli that differentially stimulate the excitatory versus suppressive 

pathways.  The two stimulus classes used in this study (SUN and natural movies) both involved coherent 

stimulation of these surround mechanisms.  However, the presence of the relative precision that we report 

is likely conditional on such stimulation, highlighting the importance of studying aspects of neural coding 

in contexts that are relevant to natural processing. 
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Supplemental #4: The relationship between jitter and the frequency content of the 

stimulus 
[Accompanying Butts et al. (2007)] 

 

 In the main text of this paper, we show that the temporal precision of LGN responses can be 

understood in terms of the frequency content of the stimulus being represented.  This supplemental 

describes how the frequency content of the stimulus that is represented by the neuron is influenced by (1) 

the temporal filtering of the neuron’s receptive field and (2) the trial-to-trial variability in the spike timing 

(“jitter”). 

 

The temporal filtering of the receptive field 

 The temporal components of a neuron’s receptive field shape what frequencies in the stimulus can 

be represented in the neuron’s response.  In the frequency domain, the filtered stimulus G(f) is simply a 

multiplication of the stimulus S(f) with the Fourier transform of the STRF K(f) (also referred to as the 

transfer function): G(f) = K(f) S(f).  Since we are interested in the power in the filtered stimulus |G(f)|
2
 = 

|K(f)|
2
 |S(f)|

2
, below we show the square magnitude of these three functions for both the temporal (Fig. S1-

2) and spatiotemporal (Fig. S1-1) receptive fields shown in Supplemental #1. 

 

 
 

Fig. S4-1: The effect of filtering by the temporal receptive field.  A. Power in the SUN stimulus described in the 

main text.  B.  Square-magnitude of the transfer function of the filter shown in Fig. S1-2.  C. Resulting power in 

the filtered stimulus.  Note that the filtered stimulus power is largely shaped by the transfer function. 

 

 The power spectrum of the natural movie stimulus that we present is typical for natural vision, 

with most power at low frequencies that gradually falls off with increasing frequency (Fig. S4-2A).  Given 

this broad shape, the band-pass properties of the receptive field itself (Fig. S4-2B) have the largest effect on 

the distribution of filtered stimulus power (Fig. S4-2C), since they attenuate both low (< 5 Hz) and high 

frequencies (> 20 Hz).  Though our movies do not capture natural eye movements, their effects would have 

to be very significant to alter this basic result.  In fact, fixational eye movements have been modelled as 

random drift that generates a power spectrum proportional to 1/f 
2
 up to 40 Hz (Rucci et al., 2000), which 

arguably would ensure a filtered stimulus power spectrum like that shown below, even when viewing a 

static scene. 

 

 
 

Fig. S4-2: The effect of filtering by the spatiotemporal receptive field.  A. The power in the natural movie 

averaged across pixels.  B.  Square-magnitude of the transfer function at the center pixel of the STRF from Fig. 

S1-1.  C. Resulting power in the filtered stimulus. 
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The effect of spike-timing variability (jitter) on the representation of the stimulus 

 In the main text, we demonstrate the effects of jitter on the representation of the stimulus that can 

be reconstructed from the neuron’s spike train (Figs. 2 and 3).  Jitter considered in this context is essentially 

noise, and as a result it is no surprise that it impacts the ability to reconstruct the stimulus from the 

response.  However, as we demonstrate in the main text (Fig. 2e), degradation of the reconstructed stimulus 

only occurs for sufficiently large jitter.  As we demonstrate below, the level of precision at which this 

occurs can be estimated given the effect of jitter on the coherence between the stimulus s(t) and the 

reconstructed stimulus s*(t). 

 The coherence 
2
( ) is given by: 

2( ) =

S( ) S*( )
2

S( )
2

S*( )
2

 

 

where S( ) and S*( ) are the Fourier transforms of s(t) and s*(t), respectively, and the bar denotes 

complex conjugate.  [Note that we are using  = 2 f instead of f to be consistent with common 

conventions.]  Consider a temporally precise neuronal response r0(t), such that the PSTH is a series of -

functions.  For simplicity, we consider the case where the jitter added to each spike follows a Gaussian 

distribution with a “jitter” j, given by N( ; j) = A exp(-
2
/2 j

2
). 

 The reconstructed stimulus is given by the convolution of the optimal reconstruction filter h( ) 

(see Methods below) with the response r(t): 

 

s*(t) = d h( ) r(t )

S*( ) = H( ) R( )
 

  

Thus, the coherence becomes: 

2( ) =

S( ) R( )
2

S( )
2

R( )
2

 

 

Note that even for a high-firing rate neuron for the LGN (20 Hz), the average inter-spike interval is 50 ms. 

The effect of the jitter on the power of the response |R( )|
2

 will be negligible, such that |R( )|
2

  

|R0( )|
2

.  However, the jitter will affect the correlation between the stimulus and response, such that: 
 

S( ) R( )
2

= S( ) R0( ) e
2

j
2 / 2

2
 

so 
2( ) = 0

2( ) e
2

j
2

 

 

where 0
2
(f) is the coherence for the case of the precise spike train.  Thus, in this simple example, the ratio 

of coherences (main text, Fig. 3d) falls off as a Gaussian with standard deviation given by the attenuation 

frequency fA = 1/( j 2 2). 

 The attenuation frequency of the coherence varies continuously with jitter, but its effects on the 

quality of the stimulus reconstruction depend on the amount of stimulus power as a function of frequency.  

As jitter is increased, the attenuation frequency decreases from infinity, and the reconstruction is ultimately 

affected when fA overlaps with frequencies represented in the stimulus. 

 Thus, the role of precision can be understood though a comparison between the frequencies 

represented by the filtered stimulus (the first section of this supplemental) and those attenuated by the jitter 

(this section).  The interplay selects for a level of relative precision ~3 , and is reflected in LGN responses 

recorded in the context of both SUN and natural movie stimuli (main text, Fig. 3). 
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ADDITIONAL METHODS 

 

Linear Reconstruction.  The optimal linear reconstruction filter corresponds to the best choice of h( ) that 

minimizes the mean-squared difference between the stimulus s(t) and reconstructed stimulus s*(t).  It 

satisfies the following equation (Bialek et al., 1991; Dan et al., 1998; Stanley et al., 1999): 
 

d ' h( ') dt r(t ) r(t ') = dt s(t) r(t ) 

 

where r(t) is a sum of delta functions representative of the neuronal spike train.  The reconstruction filters 

were estimated numerically for a given stimulus and set of experimentally observed spike times. 

 The reconstruction information IREC is calculated from the coherence spectra 
2
(f) between 

stimulus s(t) and reconstructed stimulus s*(t): IREC =  df log2[1-
2
(f)].  In the case of the natural movie 

reconstruction (main text, Fig. 3d), only the reconstruction information of the center pixel of the receptive 

field is reported.  
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Supplemental #5: Phase-locking and the temporal scales of the neuronal response 
[Accompanying Butts et al., 2007] 
 
 One possible explanation for the temporal precision of LGN neuron responses is phase locking of the 

response to the CRT refresh rate (Wollman and Palmer, 1995; Williams et al., 2004).  While most LGN neurons in 

our study displayed some degree of phase-locking to the monitor refresh, we demonstrate in here that (1) it plays 

only a minor role in affecting the time scales of the LGN response to spatially uniform noise (SUN) stimuli and 

plays no discernable role in the time scale of the response to natural scenes, and (2) that the effects that we describe 

in the main text do not result from such phase locking. 

 To examine the degree of phase-locking between the neuronal response and the monitor refresh, we use the 

methods described in Williams et al. (2004).  For each neuron in each stimulus condition, we measured a power 

ratio (PR) from the power spectrum of the neuron’s spike response, which is given by the ratio of the power at the 

monitor refresh rate (120 Hz) to the average power at surrounding frequencies (±10 Hz).  Fig. S5-1 shows the power 

spectrum of an example LGN neuron with significant phase locking (left) and that of a different neuron recorded 

simultaneously that had no phase locking (right). 

 

 
 

Fig. S5-1: The power spectra of two different X-cell responses to spatially uniform noise (SUN) stimuli.  Left: 

significant phase-locking.  Right: no phase-locking.  The Power Ratio (PR) is the ratio of the power at the monitor refresh 

(dashed line) to the average power within ±10 Hz (blue shading). 
 

 The distribution of power ratios for all cells considered in this study is shown in Fig. S5-2 for the SUN 

stimulus (A) and natural movie (B) – both had a monitor refresh rate of 120 Hz.   

 

 
 

Fig. S5-2: Power ratios of neurons in SUN (A) and natural movie (B) stimuli, with the threshold for significant phase 

locking (Williams et al., 2004) shown as a dashed red line. 

 

By the criteria reported in Williams et al., 40% of our cells are “significantly phase-locked” (dashed red line) with 

SUN stimuli, and 33% phase-locked with natural movies. Since phase locking can affect the temporal structure of 

spike trains, we took advantage of the range of PR magnitudes to estimate the effect of phase-locking on the time 

scale of the response PSTH. 
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Fig. S5-3: Correlation between power ratio and response time scales for SUN (A) and natural movie (B) stimuli.  Though 

they are correlated in SUN conditions, the correlations only account for a 2 ms difference between the most and least 

locked neuron.  There was no discernible correlation in the natural movie condition. 

 

 In fact, the phase-locking ratio is correlated with the degree of temporal precision in the SUN condition 

(Fig. S5-3A), though could account for at most a 2 ms difference in response time scale between the significantly-

phase-locked and not-significantly-phase-locked neurons.  In the natural movie conditions, there was no correlation 

between the power ratio and response time scale. 

 The temporal precision of the response is thus only slightly affected by phase-locking, and the results 

presented in this paper – which hinge on much larger time-scale differences between the stimulus and response 

structure – are independent of phase locking to the monitor refresh. 
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