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Super¯uids are distinguished from normal ¯uids by their peculiar
response1 to rotation: circulating ¯ow in super¯uid helium2,3, a
strongly coupled Bose liquid, can appear only as quantized
vortices4±6. The newly created Bose±Einstein condensates7,9Ð
clouds of millions of ultracold, weakly interacting alkali-metal
atoms that occupy a single quantum stateÐoffer the possibility of
investigating super¯uidity in the weak-coupling regime. An out-
standing question is whether Bose±Einstein condensates exhibit a
mesoscopic quantum analogue of the macroscopic vortices in
super¯uids, and what its experimental signature would be. Here
we report calculations of the low-energy states of a rotating,
weakly interacting Bose gas. We ®nd a succession of transitions
between stable vortex patterns of differing symmetries that are in
general qualitative agreement with observations5 of rotating super-
¯uid helium, a strong-coupling super¯uid. Counterintuitively, the
angular momentum per particle is not quantized. Some angular
momenta are forbidden, corresponding to asymmetrical unstable
states that provide a physical mechanism for the entry of vorticity
into the condensate.

We can predict the steady states of a con®ned, rotating dilute Bose
gas by calculating the macroscopically occupied condensate wave-
function ª that minimizes the total energy of the gas, either at ®xed
angular momentum per particle l � Lz=N~ or at ®xed angular
velocity ­. (Here Lz is the total angular momentum, and N is the
total number of particles.) We consider axially symmetric harmonic
con®ning traps of the sort typically used in experiments on Bose±
Einstein condensates7±9, with radial and axial oscillation frequencies
qr and qz, respectively. The radial frequency sets a maximum
angular velocity of rotation, because for ­ . qr the trap cannot
provide the necessary centripetal force, and the gas ¯ies apart.

Interactions within a dilute Bose gas are dominated by two-
particle scattering with a characteristic s-wave scattering length, a,
that can be of either sign. A dimensionless measure of the impor-
tance of interatomic collisions relative to the con®nement of the
trap is the parameter g [ �2=p�1=2aN=jz, where jz is the width in the
axial direction of the ground state of a single particle in the trap. To
®nd the states of a rotating gas we use a variational approach (see
Methods) that is exact in the weakly interacting limit of small g. We
discuss below the relevance of these results for strong coupling. For

current experiments g is of the order of 10±100, but this ratio can be
reduced by decreasing N, increasing jz, or reducing a using the
recently discovered Feshbach resonances10.

From elementary quantum mechanics, one might expect the
stable rotating condensates of a Bose gas con®ned to an axially
symmetric potential to be eigenstates of angular momentum. We
®nd that this is generally not the case. Figure 1 shows rotating zero-
temperature condensates for a range of values of angular momen-
tum per particle, l. These condensates were determined by numeri-
cally minimizing the total energy per particle in the laboratory
frame Elab (kinetic plus trap plus interaction) for positive g using a
variational condensate, subject to a constraint of ®xed angular
momentum per particle (see Methods for details).

The rotating condensates exhibit an array of singularities shown
as black dots in Fig. 1, which represent vortex lines seen in cross-
section. Each zero of ª corresponds to a unit vortex, as all colours
are encountered once in rainbow order (that is, phase increases by
2p) as every singularity is encircled. Because the condensate velocity
is vs � �~=M�=v, where v is the phase of ª (and M is the atomic
mass), the ¯ow about each singularity is counterclockwise, with
quantized circulation h/M. No doubly charged (4p) vortices are
observed. The patterns shown in Fig. 1 rotate with angular velocity
­ � ]Elab=~]l. Only mechanically stable states (with ]E2

lab=]l2 . 0)
are shown; unstable states are considered below.

A striking feature of the rotating Bose±Einstein condensates
(with l Þ 1) is their lack of full rotational symmetry. Instead, they
have only p-fold symmetry, with p � 2; 3; 4; 5 and 6, as shown in
Fig. 1. The combined PTsymmetry of time-reversal (T) followed by
parity (P) is retained. The orientation of the vortex array represents
a spontaneous breaking of rotational symmetry in response to an
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Figure 1 Rotating condensates. Each panel shows a cross-section perpendicular

to the axis of a stably rotating condensate with the indicated angular momentum

per particle, l. Black lines show density contours. The density of the trapped gas

decreases rapidly, and only a radius 5jr is shown. The phase of the wavefunction

is represented by colour, with the colour±phase correspondence shown in the

®rst panel. The characteristic pinwheel patterns that emerge from the zeros of the

density (black dots) show that the condensate phase increases by 2p as each

zero is encircled in an anticlockwise fashion, which implies anticlockwise

currents with circulation h/M about each singularity. In the laboratory frame, these

patterns rotate with angular velocity ­(l).
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(arbitrarily weak) asymmetric perturbation of the trap (see below).
Because of this symmetry breaking, rotating condensates with l Þ 1
are not eigenstates of angular momentum. The characteristic
patterns of these mesoscopic rotating clouds (and the discontinuous
transitions between them discussed below) provide a simple yet
decisive signature of the quantized vortex network in a mesoscopic
super¯uid.

To create a vortex from a condensate at rest (l � 0), angular
momentum must be delivered to the gas. This can be achieved by
introducing a weak, steadily rotating asymmetric perturbation of
angular frequency ­ to exert a torque on the trapped atoms. Such
perturbations are now commonly used to excite collective oscilla-
tions of the condensate11,12. Alternately, specially prepared optical
traps13,14 can be used. The steady states in the presence of a rotating
perturbation are those that minimize the energy per particle in the
co-rotating frame15, Erot [ Elab 2 ~­l. Whereas the circulation
around any closed path that avoids the singularities is quantized,
Fig. 2 shows that the angular momentum per particle is not
quantized. For a given symmetry, l increases smoothly as a function
of ­, as the cloud expands to engulf more vortices. The total angular
momentum diverges as ­ approaches the maximum angular
velocity, qr.

Below a g-dependent critical angular velocity ­c1 the gas does not
respond to rotating perturbations, and remains in the non-rotating
ground state with l � 0. At ­c1, the axially symmetric unit vortex
(l � 1) becomes lower in energy than the l � 0 state in the co-
rotating frame, and there is a discontinuous change in the nature of
the stable state. For positive g, we ®nd ­c1 � qr�1 2 g=4) in the
weak coupling limit (see Methods); Baym and Pethick16 have shown
that ­c1 varies as qrg

-2/5ln g for large g. Stringari and Dafolvo17 have
demonstrated numerically that ­c1 varies smoothly for intermedi-
ate g. For negative g, however, the results of refs 17 and 18 imply
that rotating states are never mechanically stable, as their angular
velocities are always greater than, or equal to, the maximum
allowable value, qr . We therefore focus below on positive g.

A succession of discontinuous, symmetry-changing transitions
follows at higher critical velocities ­cn, n � 2; 3; 4; ¼, with each

new stable state corresponding to a different distribution of vortices.
The surfaces shown in Fig. 2 (see also Fig. 3 below) make it clear that
the discontinuous transitions we observe are topological transfor-
mations of the rotating cloud, which develops the appearance of a
multi-holed torus. At higher angular velocity, the central arrange-
ment of singularities is well-described as a triangular lattice of
vortices whose registry relative to the centre of the trap varies with l
(Fig. 1). Such a vortex lattice is familiar from the well-known
behaviour of rotating bulk super¯uid helium19±21.

We now consider how a trapped Bose±Einstein condensate makes
the transition between the stable condensates at l � 0 and l � 1.
Figure 2 shows that there are no mechanically stable states for l in
this interval. Yet the lowest-energy states for these l are well de®ned,
and can easily be determined by minimizing Elab. What are these
unstable states of forbidden angular momentum?

States with angular momenta ranging from l � 0 to 1 are shown
in Fig. 3. They provide a physical mechanism for the entry of the
vortex into the condensate. When the vortex approaches from the
periphery of the cloud, the centre of mass of the condensate shifts in
the opposite direction, as if repelled by the singularity. This asym-
metric distribution of particles orbits the axis with angular velocity
­c1 in the laboratory frame, contributing angular momentum from
its centre-of-mass motion. Only when the singularity begins to
penetrate the cloud does the centre of mass spiral back towards the
centre of the trap, eventually returning to the axis.

Transitions between states of differing symmetry are all discon-
tinuous, and generally involve the crossing of an energy barrier.
(The l � 0 $ l � 1 transition is an unusual case for which the
barrier is zero in the small-g limit, and is more reminiscent of two-
phase coexistence.) Barriers imply the existence of mechanically
metastable states (that is, local minima of Erot), which are shown as
thin grey lines in Fig. 2. As vortices enter the cloud from the low-
density periphery, the barrier to incorporating additional vortices is
much smaller than in bulk helium, where vortices must be nucleated
at the walls of the rotating container, and must overcome the strong
image forces exerted by these boundaries. The absence of metastable
states at ­ � 0 implies that the harmonically trapped Bose gas
cannot exhibit the phenomenon of persistent currents, because the
vortex can slip out of the trap without an energy barrier. (This has
also been shown22 for large g). Thus rotating currents are stable only
when (1) the gas is driven externally, or (2) in the presence of a
pinning potential23 that stabilizes the l Þ 0 rotating states.

The symmetries of the various rotating states that we have found
for a compressible trapped Bose gas, and the sequence in which they
appear as a function of ­, agree with the observations5 of rotating
containers of liquid 4He, which is a strong-coupling super¯uid.
(The only difference is that in the weak coupling limit studied here,
the ®ve-fold symmetric state is metastable.) Thus the phenomena
predicted here for trapped dilute gases can be considered as the
mesoscopic quantum analogue of the hydrodynamic instabilities
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Figure 2 Angular momentum versus angular velocity. Shown is the angular

momentum per particle l versus the angular velocity ­/qr for stable (black lines)

and metastable (thin grey lines) states. There areno stable or metastable states in

the forbidden ranges l � 0±1 and l � 1±1:70. Discontinuities in l versus ­ repre-

sent ®rst-order phase transitions between states of different symmetries. The

rotational symmetry of each branch is indicated. Three-dimensional plots of

surfaces of constant density are shown for states with two-fold and six-fold

symmetry in a spherical trap. We note that the clouds become ¯atter at higher ­

due to centrifugal forces.
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Figure 3 Mechanism for vortex entry. Panels show surfaces of constant density

jª�r�j2 for a sequence of mechanically unstable states between l � 0 and 1. (The

case of a spherically symmetric trap with qr � qz is shown, but the ¯attening of the

condensate with increasing l is more general.) The initially spherical cloud is ®rst

displaced off-axis as a vortex line approaches. The line is enclosed, and is

ultimately drawn back to the centreof the trap. Avideo of a rotating condensate as

it spins up is available at http://marichal.berkeley.edu/bosemovie.
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found in incompressible inviscid ¯uids5,19. The smooth variation of
the properties (such as size and shape16, collective mode frequen-
cies24±26 and thermodynamics27) of dilute Bose gases as a function
of g, and the correspondence between our results and the
behaviour of rotating liquid 4He, strongly suggests that the
symmetry-breaking phenomena we have described in the weak-
coupling limit should occur over the entire range of g in a
qualitatively similar manner.

There are, however, notable quantitative differences. In the small-
g limit, we ®nd that the core size and inter-vortex spacing are both
comparable to the non-interacting ground-state width jr, and that
the mean square radial (but not axial) dimension of the cloud grows
linearly with l to accommodate more vortices. In the strong-
coupling limit, however, the core size becomes comparable to the
healing length y < jrg

2 1=5, which can be much smaller than the
radial extent R�0� < jrg

1=5 of the non-rotating cloud16. Under these
conditions, the spacing between vortices is set by the condition20

that the mean vorticity (that is, the vortex density) be equal to 2­.
An extension of the Thomas±Fermi approach16 to rapidly rotating
gases in the large-g limit then predicts that the radius of the cloud
diverges as ­ approaches qr according to R�­� � R�0�q2 3=5

eff , where
qeff [ �q2

r 2 ­2
�1=2 is the effective trap frequency, taking centrifugal

forces into account. With increasing ­ the condensate also ¯attens,
and its axial:radial aspect ratio shrinks as Z�­�=R�­� < qeff =qr ,
where Z(­) is the axial extent of the cloud. The angular momentum
per particle diverges as (qeff/qr)

-6/5. M
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Methods

Using the Gross±Pitaevskii approach for trapped Bose gases16, we consider

variational condensates of the form

ª�r� �
m̂.0

cmxm�r� �1�

where the complex coef®cients cm are the probability amplitudes for ®nding a

condensate atom in the low-energy angular-momentum eigenstates of the

harmonic oscillator potential, xm�r� � eimfrme 2 ��r=jr �
2��z=jz �

2�=2=�p3=2m!j2
r jz�

1=2.

Here ji [ �~=Mqi�
1=2 for i � r or z, M is the atomic mass, and qi is the

oscillation frequency.

The angular momentum per particle in the state (1) is l~ � Sjcmj
2m~, and

the kinetic plus trap potential energy per particle is:

Eideal�ª� � ^jcmj
2m~qr � l~qr �2�

Thus the energy of a rotating non-interacting Bose±Einstein condensate

depends only on its angular momentum l, and not on the detailed form of the

superposition (1), indicating a large degeneracy18.

In a real gas, interactions between the atoms break this degeneracy and select

a particular linear combination to be the lowest energy state for each l. The

Gross±Pitaevskii interaction energy per particle is:

Eint�ª� [
2p~2aN

M #jª�r�j4d3r �3�

We have numerically determined the complex amplitudes {cm} in equation (1)

that minimize the total energy in the laboratory frame, Elab � Eideal � Eint,

subject to the constraint of ®xed angular momentum per particle. Our

calculations are exact in the small-g limit, where the use of a single Gross±

Pitaevskii condensate is equivalent to degenerate many-body perturbation

theory at zero temperature (D.S.R., unpublished results). This result incorpo-

rates the effects of small symmetry-breaking perturbations.

The minimum value of Eint for given l can be written g~qreint(l), where eint(l)

is dimensionless and depends only on the sign of g for small g. Then the angular

velocity ­�l� [ ]Elab=~]l � qr�1 � g]eint=]l�. This function can be inverted to

produce l(­), which in the weak-coupling limit depends only on �­ 2 qr�=g

(Fig. 2). We note that rotating gases expand (and hence become more dilute)

with increasing l. Thus for positive g the interaction energy decreases with

increasing l, and we ®nd that ­�l � , qr . For negative g, however, ­�l� > qr for

l Þ 0, and centrifugal forces destabilize all rotating states.
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The need to characterize and forecast time series recurs through-
out the sciences, but the complexity of the real world is poorly
described by the traditional techniques of linear time-series
analysis. Although newer methods can provide remarkable
insights into particular domains, they still make restrictive
assumptions about the data, the analyst, or the application1.
Here we show that signals that are nonlinear, non-stationary,
non-gaussian, and discontinuous can be described by expanding
the probabilistic dependence of the future on the past around
local models of their relationship. The predictors derived from

² Present address: ARIS Technologies, Cambridge, Massachusetts 02140, USA.


