
Functional mapping of neurons in primary visual cortex using computational barcodes
Isabel Fernandez1, Jan Antolik2, Daniel A. Butts3

1Applied Mathematics & Statistics, and Scientific Computation Program, University of Maryland, 2Faculty of Mathematics and Physics, KSVI, Charles University, Prague, Czech Republic,  
3Program in Neuroscience and Cognitive Science, University of Maryland    

References

Conclusions

Preliminary: color processing in V1

  

Methods

neurotheory.umd.edu

Supported by NSF IIS-2113197 (ISF, DAB, FB), ERDF-Project Brain dynamics, No. CZ.02.01.01\00\22_008\0004643 (JA),
& NIH intramural (FB, BRC).

Predicted responses

Dimensionality
reduction

K-means clustering in T-SNE space
identifies distinct group characteristicsOriginal barcodes

Neurons

N
et

w
or

k 
un

its

Logistic regression finds 3D basis set in 
original barcode space based on groups

L4 cell a

L4 cell b

Computational barcodes describe neural function in common 
functional space, and capture computationally relevant 
distinctions between different parts of the cortical circuits

Biological constraints on the CNN leads to a more 
interpretable representations of V1 computations

Connectivity and a low-D “barcode space” demonstrates 
geometric relationships between neuronal computations 

Distinct groups of computations found in (real) V1, and 
chromatic processing can potentially aid in circuit 
identification
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Method 0: Unit-to-unit comparison using Z-scored cosine similarity (CS)

Method 2: Projecting into a functionally relevant subspace using clustering
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Simulated cat V1 data (Antolik et al. 2024 [6])

Macaque V1 recordings (Conway lab, NIH)

Data was generated from a large-scale spiking model of V1 with cell types 
and connectivity that constrained by known anatomy and able to reproduce 
classical and extra-classical V1 tuning properties. The simulation integrates 
differential equations and neurons are integrate-and-fire, with the simulation 
encompassing  over 100,000 labeled neurons across 5° of visual field. For 
analysis, cells within 0.3° were selected, yielding 607 Layer 4 excitatory, 187 
Layer 4 inhibitory, 535 Layer 2/3 excitatory, and 162 Layer 2/3 inhibitory units.
     The resulting simulaed neural responses (spikes) were fit as if real record-
ed data, but the specific connectivity properties of each simulated neuron was 
known exactly, so could be used to test the ability of our approach to indentify 
the different computations carried out at different stages (layer, exc/inh).

Recordings from macaque V1 were made using a Utah array, while the 
monkey passively fixated over 4-sec trials, using standard approaches [7]. We 
pooled data from five recordings, yielding 726 units (with 349 single units) 
that was used in our approach. Recordings were performed by Felix Bartsch 
and Bevil Conway.  

Cloud stimuli
In both stimulation and experiments, we presented cloud stimuli [8,9], which is 60 Hz 
spatiotemporal white noise spatially band-passed in the range of 6-30 cycles per degree 
to optimally drive V1 responses while maintaining a statistically stable but highly vari-
able context to fit models of V1 responses. For macaque experiments, we used three in-
dependent clouds to cover DKL color space, in luminance, L-M, and S-dimensions. 
Note that such stimuli could be converted to an equivalent LMS (cone) space, which 
was done in preliminary analyses (in the far right). Stimuli were continuously adjusted 
for the eye position to represent the image on the retina. The five experiments used 
here represented between 40-60 minutes each of continuous data. Repeated stimuli 
were not possible because of eye movements. 

Because the cat V1 simulation did not have color processing, we simulated response to simply luminance clouds, without 
any cone-opponent channels. The simulated data consisted of responses to 480,000 frames of the stimulus at 60 Hz reso-
lution, split into training and validation, and 100,000 frames with 10 repeats for model performance testing (i.e., R2).

(adapted from Antolík et al. 2024 [6])
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Maximum a posteriori (MAP) estimation of CNN parameters [10]
CNNs of various configurations were fit to the neural data described using PyTorch. via using stochastic gradient descent 
(the AdamW optimizer) to maximize the regularization-penalized population Poisson log-likelihood (per spike), given by 

where           is the model predicted firing rate, and         = 1 for all time points where there is recorded data for neuron i, and 
zero otherwise. CNN convolutional layers consisted of filters, batch-norm, and a ReLU, and followed by a final “readout” 
layer with a softplus activation function. The readout layer sampled from a single spatial (and orientation for the ori-conv 
model) of the outputs of the core in the network for each cell [11]. We constrained the readout weights to be positive, and a 
third of the units in each level were made to be “inhibitory” by multiplying their output by -1.
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Interpretability via biological constraints

Computational barcodes

Bottleneck at first stage produces
 LGN-like filters
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LGN level
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Readout level
neuron 1

. .
 .

Neuron-specific readout weights across model depth show the composition of each 
neurons computation using a common “functional basis”. [2,3,4,5]
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Visual processing is performed over large neuronal populations distributed over 
many layers and areas. How is it possible to understand the role of individu-
al neurons and circuits (and their specific physiological properties) in such 
global computation? Traditional approaches are based on characterizing one 
or a small set of "features" signaled by each neuron's response (e.g., [1]). Here, 
we explore an alternative: using computational barcodes to characterize the 
visual processing performed by each neuron in a shared functional space 
[2,3,4,5] derived using deep neural networks. Here we optimize and validate this 
approach using data generated by a dynamical simulation of V1 neurons with 
known circuits and architecture.

How do we  interpret
the role of individual 

neurons in global 
computations?

Barcode metrics to identify computational diversity
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Using an LGN-bottleneck 
constrained in LMS space, 
the CNN inferred 
spatiotemporal-chromatic 
features resembling 
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magnocellular (last 2) units
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This approach was applied to data recorded in the Conway lab in macaque 
V1 using spatiotemporal chromatic stimuli (see Methods) 
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To understand the influence of the-
model architecture on barcode inter-
pretability, we compare our model 
(Ori-Conv Model) to two other 
models:
• Reg-Conv: Same LGN and V1 ar-

chitecture but without orientation 
convolution. 4 Levels: 2, 40 , 30, 20 
units respectively.

• Vanilla: No biologically inspired 
levels and readout pulls from final 
level. 3 Levels all 32 units. 0.5
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LGN level:
Spatial convolution layer

Spatial & orientation convolutions
Large filter width

Spatial & orientation 
convolutions

applied to each unit, with
each neuron in the readout 
level sampling a single
spatial position and orientation 
from the convolutional outputs
from the core (shared) CNN
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Sorting Barcodes

Method 1: Connectivity-based barcodes through within-layer sorting

Layer 4 cells
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units leading to

low cosine
similarity

Layer 2/3 cells
share the same
units leading to

high cosine
similarity
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