

Amplification of feature selectivity by spatial convolution in primary visual cortex

Society for Neuroscience 2021 Presentation P479.06, 11/10/2021 2:00PM CST

Felix Bartsch¹, Sid Henriksen^{2,3}, Jenny CA Read³, Bruce G Cumming², Daniel A Butts¹

¹Dept of Biology and Program in Neuroscience and Cognitive Science, UMD ²Laboratory of Sensorimotor Research, National Eye Institute, NIH ³Bioscience Institute, Newcastle University, Newcastle Upon Tyne, UK

The Binocular Energy Model

Does V1 combine inputs from each eye using the same computation as the BEM? Does this computation generalize to other stimuli despite being designed for gratings?

Directly fitting a BEM

BEM generates a symmetric response to correlated and anticorrelated stimuli

Spatiotemporal filters

Spatial profiles

at the best lag

Generating disparity variance in a single BEM filter

Disparity variance (DV) = 0.0055Pattern variance (PV) = 0.1348Total variance (TV) = 0.1402

Disparity variance fraction (DVF) = DV/TV = 0.039

Disparity variance across recorded cells

BEM: filter combination amplifies disparity variance

Pattern variance is uncorrelated between subunits, and sums linearly Disparity variance is correlated between subunits, and combines super-linearly

Spatiotemporal subunits

Convolutions amplify disparity selectivity in the model

Vintch et al., 2016 Butts, ARVS, 2019

Inhibition further amplifies disparity variance

Population results

We can explain almost all disparity variance in strongly disparity-tuned cells

The model also captures large fractions of variance across all cells

Summary

- The Binocular Convolution model is a data-driven model than can capture binocular integration of V1 neurons almost completely
- Its core computation is spatial convolutions of binocular filters, which amplifies disparity tuning
 - The BC model can capture disparity tuning of cells where previous models fail, explaining a median of over 90% of disparity variance in disparity-tuned V1 neurons
- Measures of pattern and disparity variance provide insight into the function of the model structure
 - They also reveal a subset of V1 neurons specialized for disparity information
- The BC model generalizes to non-disparity-tuned cells, explaining on average over 50% of the explainable variance across all neurons

http://neurotheory.umd.edu

