
Classical viewpoint: feature detection

Machine learning: need to address on 
   systems-level 

Electrophysiology: Recordings were made in primary visual cortex (V1) of awake two macaques using 
24-electrode linear arrays (50 μm spacing), and (in one case) a Utah array, as previously described [1]. Animals 
performed a simple fixation task to obtain a liquid reward upon completion of each 4-second trial. Here we 
pooled data from eight experiments, resulting in 48 well isolated single units (SUs) and 219 multiunits (MUs).

Stimuli: Uncorrelated random bar patterns (’1D ternary noise’), aligned as close as possible to the preferred 
orientation, were presented at 100 Hz refresh rate. Eye-position was tracked using “model-based eye-tracking” 
[1], resulting in a stimulus that took eye position into account (see below). 

Machine learning: Convolutional neural networks (CNNs) of various configurations were fit using custom soft-
ware using Google’s TensorFlow package. Parameters were fit using stochastic gradient descent (the “adam” 
optimizer to maximize the regularization-penalized population Poisson log-likelihood (per spike), given by:

where ri(t) is the model predicted firing rate, and di(t)=1 for all time points where there is recorded data for  
neuron i, and zero otherwise. The network itself was build from LN units with a rectified linear (relu) nonlinearity. 
All weights were constrained to be positive, but 1/4 of units in each level were made to be “inhibitory” by multi-
plying their output by -1.
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Introduction
I. Machine learning to predict neural activity II. Computational Scaffold Network
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Machine learning approaches offer the opportunity to capture 
nonlinear computations performed by V1 neurons significantly 
better than current models, but what they produce is difficult to 
interpret on its own.

The computational scaffold network offers a new conception 
of neural function in the context of hierarchical computation, as 
an alternative to descriptions based on feature detection.

The scaffold network reveals complex structure of V1 neuron 
computation across nearly all neurons. Such models 
significantly outperform less complex models.

Putative inhibitory inputs are derived from deeper levels of the 
scaffold, suggesting it is more computationally complex (and 
likely not easily captured by simpler models.

The model predicts a plausible array of size-tuning, which 
derives from inhibition in deeper layers.

The ability to perform complex visual tasks such as object recognition is thought to 
require many successive stages of nonlinear computations, a hypothesis supported 
by the hierarchical structure of visual areas within the primate cortex. This 
assumption underlies the modern machine learning approach of deep neural 
networks (DNNs), which can be trained to perform such visual tasks with similar 
performance to humans. However, while such conceptions of visual system function 
serve as a useful qualitative description, it is unclear how to validate such 
descriptions using neural data, and – additionally – how to understand neural activity 
in the context of hierarchical computation.
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1. What is the role of individual 
neurons in system-wide 

computation?

2. How can neural activity be 
interpreted in the context of 

such a model?

Approach

Methods
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Part 1: Machine learning 
to predict observed neural 
activity

Part 2: “Computational scaffold”
to infer neural function within
hierarchal computation
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Deeper models give better, less interpretable, predictions

Conclusions

=> LNLN models of V1 are data-limited

=> adding more recorded units can improve 
     all fits via shared computation

Nonlinear models of [single] V1 neurons

Population fitting via shared computation
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Spatiotemporal “features”

LNLN cascade models like the Nonlinear Input Model (NIM) [2] and others [3,4] 
can identify many stimulus features that a given neuron is sensitive to.
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LNLN cascades can in principle represent any 
high-dimensional nonlinear function r=f(s) 
with enough LN subunits, but...

... in practice, number of subunits that can be �t is data-limited.

Stimulus

Observed neural activity of many neurons

Number of convolutional filters in hidden layer
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(267 total, of which 48 are well-isolated)

Fit using:
  SUs only
  MUs and SUs

Mean LLx of best
NIM models

First level: spatiotemporal features

Second level: ?

Last level: ???

[it is not sparse] 
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What does this neuron respond to?

1. COMPUTATIONAL SCAFFOLD => Captures “all” computations performed by
     neurons (in order to predict observed resps)

     

=> Components of computation 
     contributing to neuron response

2. SCAFFOLD VECTORS

=> “Location” of neuron in space
      of system-level computation 

**will just approximate computation, and topology of scaffold vectors should be 
preserved with different scaffold structures and nonlinearities (can show)
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Cell-by-cell LLx improvement

Methods to incorporate large amounts of
 recording into a single population model
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Machine learning frameworks to fit neural data. See related work in V1 [5-7] and 
retina [8].

Inhibitory connections (from the scaffold) to V1 neurons robustly derives from 
deeper levels, across different scaffold configurations.

=> Defines a “feature space” combined with a 
      how features are nonlinearly combined.

Mean GLM = 0.16 bits/spk

mean = 0.048 bits/spk

Cell-by-cell LLx improvement
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Scaffold network maintains predictive power

The “structure” of V1 neuron computation

0.0 0.1 0.2 0.3 0.4 0.50

10

0.0 0.1 0.2 0.3 0.4 0.50

10

20

mean = 0.053 bits/spk

(and further improves)

0 20 40 60 80 100 1200

2

4

6 median = 13.1% (182% over GLM)

N
um

be
r o

f c
el

ls

LLx improvement over best NIM fit (bits/spk) Percent improvement over best NIM fit

3 cells

Lvl 1

Lvl 2

Lvl 3

=> Substantial improvement over the best V1 models (and just the beginning)
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− Each layer is composed of 3/4 excitatory and 1/4 inhibitory units
− All weights (other than to the stimulus) have pos. constraints
− Yields equivalent fits, but gives more structural information

Excitation and Inhibition

Size tuning

(L2/3) 

− (regularization penalties)*

Example L4 neurons

Example L5/6 neurons

Example L2/3 neurons
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Trends across layers

=> Computation of most V1 neurons is spread across levels of scaffold

Properties of [putative] inhibition

http://neurotheory.umd.edu

The expectation was that 
layer-4 neurons would connect 
preferentially to earlier levels 
than other V1 neurons. There is 
only a weak trend (with limited 
data), which is best seen with a 
two-layer scaffold. 0.2
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Excitation

Inhibition

Deep inhibition should have a wider spread, suggesting it could be result in 
size-tuning. Although this was not experimentally tested, we generated model 
responses to see if the fit models would predict size tuning, using random bar 
stimulation apertured at different widths, relative to each cell’s RF location.
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Total Exc and Inh By level of scaffold
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=> Wider inhibition from deeper layers catches
     up to excitation for larger stimuli 
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