The interplay between excitation and inhibition in the inferior colliculus
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Motivation Nonlinear Modeling Framework: Tuning of GNM differs significantly from linear STRF Adaptation to Noise
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We employ a generalized nonlinear model (GNM) [2], which:
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- extracts separate excitation and inhibition from extracellular data A model using identical time kernels

- can predict responses more accurate and with higher temporal precision Modeling techni | i iant optimization techni develobed for excitation and inhibition (GNM1)
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Experimental Procedures Results: Temporal Precision through Inhibition: | | ~—-GNM exc  inh
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Stimuli: Responses: . : . : :
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Stimuli were amplitude-modulated pure tones that were presented monaurally at each
neuron’s best-frequency. In the V condition, stimuli were created using measured power
spectrum of animal vocalizations. Noise stimuli were generated using power spectra of
ambient noise (i.e. wind, vacuum cleaner), and the VN condition is a superposition of both
stimuli, with different noise presented in each trial.
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Conclusions:

_A J\ A A // - The GNM can extract putative excitatory and inhibitory tuning from extracellular

0 1‘%me [%OS] 30 e fime Jms| kernel and postsynaptic current
/m recordings, leading to a much better description of the extracellular data than
exc models based on single receptive fields.
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fime - lar. As a result, the linear receptive field averages their effects, and does not ac-
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The GNM is a cascade model with linear elements: GNM finds higher and sharper Predictive Power (Fraction of the ex- curately reflect their underlying tuning.
peaks than linear models. plainable variance explained) This mechanism has also been found in intracellular studies, i.e. [3]. - The temporal precision of IC responses can be explained by the interplay of ex-

r(t) = F {Weu[s(t)] * Dew + Winls(t)] * Din + hspr * R(t)} GNM: 51% GLM:27% LN: 23% citation and delayed inhibition.

- Adaptation to noise may be the result of a change in the balance between exci-
tation and inhibition, rather than explicit changes in temporal tuning.

- The GNM modeling results are consistent with a common source for excitation

and inhibition. (Circuitry?)
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where * represents temporal convolution: s(t) x k = Z s(t — 7)k(T) . .
. | | | —o— GNM/GLM

The ;’'s represent nonlinear transformations of the stimulus s(f), and F is the spiking non- |+ GNM/LN
linearity, which is given by: F(g) = log(1 + exp(g — #)) where K is the spike threshold. Population Data /‘JA‘M
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We optimize the parameters of the GNM to maximize the log-likelihood of the model given

the data, given by: .
LL = Tog 2 <; logr(ts) — Zr(t))
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