
Neuronal processing changes with different stimulus contexts. For example, 
stimulus processing in IC neurons can adapt to changes in background noise 
[1]. Such adaptation is advantageous for stimulus processing in different stimu-
lus contexts. 

What is the neuronal computation underlying changes with adaptation?

Linear models average all inputs to a cell into one receptive field, making it dif-
ficult to understand where these changes are coming from. 

We employ a generalized nonlinear model (GNM) [2], which:

- extracts separate excitation and inhibition from extracellular data
- can predict responses more accurate and with higher temporal precision
  than standard models based on linear receptive fields
- suggests that temporal shifts in processing associated with adaptation to 
  noise involve a change in the relative strength of excitatory and inhibitory
  input tuning, rather than explicit changes in temporal selectivity

Thus, considering the interplay of excitation and inhibition provides a better de-
scription of IC neuron responses, and provides insight into their adaptation in 
different stimulus contexts.

 

Conclusions:
- The GNM can extract putative excitatory and inhibitory tuning from extracellular 
  recordings, leading to a much better description of the extracellular data than
  models based on single receptive fields.
- Tuning of excitatory and inhibitory elements in the GNM are generally very simi-
   lar. As a result, the linear receptive field averages their effects, and does not ac-
  curately reflect their underlying tuning.
- The temporal precision of IC responses can be explained by the interplay of ex-
  citation and delayed inhibition.
 - Adaptation to noise may be the result of a change in the balance between exci-
   tation and inhibition, rather than explicit changes in temporal tuning.
- The GNM modeling results are consistent with a common source for excitation 
   and inhibition. (Circuitry?)

Nonlinear Modeling Framework:

Modeling techniques leverage efficient optimization techniques developed 
for maximum-likelihood estimation of the GLM (generalized linear model) 
[4]. In the GNM internal nonlinearities enable the fitting of separate excita-
tion and inhibition. Without them the model would reduce to a GLM.

Models are fit with 0.5 ms precision to single spike trains (40 s) for a 
population of 23 cells. Model performance was measured on 100 repeats 
of a cross validation sample (3 s). 
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Temporal Precision through Inhibition:

Common Source for Excitation and Inhibition?

Tuning of GNM differs significantly from linear STRF

GNM finds overlapping excitation and inhibition. This cannot be repre-
sented by linear models as they average all inputs into a single STRF.

GNM finds time kernels for excitation 
and inhibition of very similar shape 
(and possible delay). 
 
A model using identical time kernels 
for excitation and inhibition (GNM1) 
performs not significantly worse than 
the original GNM.

High temporal precision is achieved by short 
time delay between excitation and inhibition.

Refractory period (spike history term) also 
contributes to  temporal precision. 

effective time kernel

At all time resolutions GNM performs better than linear models.

Improvement of GNM performance over linear models increases with 
temporal resolution. 
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Detailed Modeling Methods:
The GNM is a cascade model with linear elements:

where     represents temporal convolution:

The Wi’s represent nonlinear transformations of the stimulus s(t), and F is the spiking non-
linearity, which is given by:                                                                                                                                                                                                                                                                where � is the spike threshold.  
 The nonlinear transforms Wi  of the stimulus are simple LN models, each specified by 
an internal receptive field ki and a nonlinearity fi.

We optimize the parameters of the GNM to maximize the log-likelihood of the model given 
the data, given by:

where r(t) is the rate predicted by the model, and {ts} are the observed spike times. 
 The likelihood can be efficiently optimized in the context of a GLM   framework [4], find-
ing optimal parameters for both the postsynaptic current pi and internal nonlinearities fi. 
For this bilinear optimization, internal nonlinearities are represented as a linear combina-
tion of appropriately chosen basis functions [5]. This leaves only fitting the internal recep-
tive fields by brute force. 
    

Experimental Procedures
Stimuli: Responses:

Vocalizations (V) Ambient Noise (N) -- single-unit recodings in gerbil

Stimuli were amplitude-modulated pure tones that were presented monaurally at each 
neuron’s best-frequency. In the V condition, stimuli were created using measured power 
spectrum of animal vocalizations. Noise stimuli were generated using power spectra of 
ambient noise (i.e. wind, vacuum cleaner), and the VN condition is a superposition of both 
stimuli, with different noise presented in each trial.

Adaptation to Noise
In the presence of noise (VN condi-
tion), linear receptive fields shift their 
temporal tuning to generally have 
longer latencies and become less bi-
phasic [1].

0 5 10 15 20 25 30
time [ms]

v
vn

The GNM fits suggest that the effects on the linear receptive field using adap-
tation to noise can be primarily explained by a relative shift in the gain of excit-
atory versus inhibitory inputs.  In the noise condition, inhibition is reduced 
compared with excitation. 
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Which aspects of GNM change in 
the VN condition?

Each component of the GNM fit in the V 
condition was separately changed to 
describe the VN condition for each 
neuron (N = 23). The predictive power 
of the resulting GNM was compared 
with the GNM where all the components 
of the model were refit.

Changes in the internal nonlin-
earities with adaptation

10 15 20 25
time [ms]

10 15 20 25
time [ms]

GNM exc
GNM inh
GNM exc − inh

In the noise condition the relative 
strength of inhibition to excitation 
is decreased. This results in a 
later inhibitory peak in the linear 
kernels.  

Results:
GNM fit for an Example Cell

The GNM typically accounts for two 
times the explanable variance as 
single-filter models such as the LN 
model and GLM (N = 23).

Time kernels Postsynaptic current Spike historyNonlinearity

Predictive  Power (Fraction of the ex-
plainable variance explained)
GNM: 51%     GLM: 27%     LN:  23%
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This suggests a common source for 
excitation and inhibition. Possible 
correspondence to known circuitry?

GNM finds higher and sharper 
peaks than linear models. This mechanism has also been found in intracellular studies, i.e. [3].
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Motivation


