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Conclusions

We propose a new mechanism underlying contrast adaptation in cur-
rents: multiplicative suppression (putative presynaptic inhibition ).

Multiplicative suppression offers a unified explanation for temporally 
precise excitatory currents and changes in their stimulus selectivity 
with contrast (adaptation).  No change in parameters is necessary to 
predict the currents at different contrasts. 

Functional differences in stimulus processing between RGC types can 
be better discerned through nonlinear analysis. For example, ON-
Transient and ON-Alpha neurons have very distinct nonlinear computa-
tions. This sets the foundation for understanding functional diversity 
in the >20 RGC types in the mammalian retina.

Linear models can explain a retinal ganglion cell's (RGC's) coarse response 
properties to dynamically changing stimuli [1]. However, such models cannot 
capture well-known nonlinear effects such as contrast adaptation [2] and the 
generation of temporal precision [3]. These nonlinear properties contribute to 
our understanding of visual computation in general, and also provide constraints 
in linking functional aspects of the neuron’s response to underlying physiological 
mechanisms. Here, using physiologically-based modeling of excitatory current 
inputs to identified RGC types, we provide evidence for a mechanistic basis of 
nonlinear processing in the retina and demonstrate its possible role in distin-
guishing functional roles of different RGC types.

Background
Retinal Circuit

1.  There are >20 types of retinal ganglion cells (RGCs) in the mouse retina. They are in part
     distinguished by their strati�cation level in the inner plexiform layer (IPL).

2.  There are 10 types of bipolar cells that provide excitatory input to RGCs and also stratify
       in di�erent sublaminae of the IPL.

3.  RGCs also receive [primarily inhibitory] input from a diversity of amacrine cells. Such
      input can be direct or indirect (presynaptic on the bipolar cell terminals).
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An RGC’s function is determined by its connections with specific
types of bipolar and amacrine cells.

How to establish this link?

-- Identify the type of RGC being recorded (targeted patch and post-experiment labeling)
-- Isolate synaptic currents from bipolar cells by recording in voltage clamp at chloride reversal
-- Nonlinear modeling based around possible mechanisms present to distinguish effects

?

(from Masland, 2001)
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Experimental and modeling approach
RGCs are recorded from in vitro mouse retina during visual stimulation consisting of a 1 mm spot centered on the 
neuron’s receptive field and temporally modulated luminance using UV light to insure cone-mediated responses [4].

The Linear-Nonlinear (LN) cascade is well established for characterizing the effects of contrast adaptation on neuronal pro-
cessing represented in both spikes and intracellular recordings [1,5]. We use these established methods to calculate the 
linear temporal filter using the cross-correlation between the stimulus and recorded current, and scale its overall magnitude 
in order to bring its measured nonlinearity in high contrast and low contrast conditions into register. Note that the LN model is 
also estimated as below, which allows for direct comparison to more complex models (but results in the same description).
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Full period is repeated 10 times:
   -- 60 seconds for parameter estimation 
      at each contrast
   -- 3 sec x10 repeats of a unique cross-
       validation sequence at each contrast

Contrast switching (3.3-fold difference in contrast)

Linear-Nonlinear (LN) analysis 

The MS model is composed of an LN model representing the excitatory current multiplied by the output of a second LN model 
representing a suppressive input (see diagram and equation in the second column). Thus, the LN model is a subset of this 
model (where there is no suppressive term) and can be estimated in this framework as well.
 Model parameters are chosen to minimize the mean-squared error (MSE) between the observed current and that pre-
dicted by the model. For parameters that linearly affect the predicted current, the MSE-surface with respect to these param-
eters is convex, with a single global optimum. These models also have multilinear terms as well as parameters within fixed 
nonlinear functions [6]. While the MSE-surface is not convex in this case, in practice these optimizations are well behaved 
with appropriate choice of initial conditions and optimization order, and we use methods similar to those described in [6].
 We represent both the temporal filters and nonlinear functions as linear combination over a set of basis functions. For 
the temporal filters, we use a series of orthonormalized sine functions stretched at longer latencies [7]. This allows for the 
filters to be represented by fewer parameters, and implicit regularization by omitting high-frequency components. The nonlin-
eraity is represented by “tent basis” functions [8] so that its coefficients are linear with respect to the current and can be effi-
ciently optimized. Excitatory nonlinearities are constrained to be non-negative and monotonic increasing, and the suppres-
sive nonlinearities are constrained to be bounded between 0 and 1 and monotonic decreasing.

Nonlinear modeling approach: LN and multiplicative suppression (MS) model

High Contrast Low Contrast ...HC
XVAL XVAL XVAL

“Frozen noise” that is identical
on each repeat (Xval).

Temporal variation of luminance is
determined by low-passed (30 Hz
cutoff) Gaussian white noise.

1. Spikes are recorded in loose-
    patch configuation.

2. Excitatory currents are then
    recorded by breaking in and
    clamping voltage at -67 mV
    (reversal for Cl-)
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Time (sec) Time (sec) 3. Cell is filled and identified post-
    hoc by its dendritic stratification
    in the IPL.
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Contrast adaptation in currents

ON-Transient
(2 example neurons)

ON-Alphas
(2 example neurons)

Measured

Predicted
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Changes in neuronal processing with contrast are gauged using LN analysis [10].This reveals that 
adaptation effects are diverse [11], but depend on RGC type.

Nonlinear structure that explains temporal precision also
 captures many of the effects of contrast adaptation
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Diversity of [nonlinear] computation: ON-transient 
Only subtle differences are evident in comparison of linear processing between RGC types:

ON-Alpha

ON-Transient

Do these subtle differences
capture the difference in

computation between them?
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ON-Transient: two excitatory inputs?
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Distinct computation
revealed by nonlinear

modeling
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Nonlinear processing evident in synaptic currents
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Evidence for mechanism underlying suppression
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The multiplicative suppression model was designed to simulate presynaptic inhibition  at the bipolar-
ganglion cell synapse, but is this the only explanation? Synaptic depression at the synapse could also 
“veto” excitation and have a multiplicative form, and has been suggested to play a role in RGC process-
ing [9]. Can we disambiguate these two possibilities?

Experiment:  separate modulation 
of “center” and “surround” of re-
corded RGC: fit two-component MS 
model to the result.

Expectation: if synaptic depression,
suppression should have the same

spatial “footprint” as excitation.

Multiplicative suppression appears to largely arise from the surround! 
(likely not synaptic depression) 

Contrast gain appears to be correlated
to rectification of excitation

 Note: preliminary data: N = 1 (ON-Alpha)
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“Multiplicative suppression” captures transients
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Suppressive nonlinearity takes values between 0 and 1
     1 = no suppression
     0 = vetoes excitation completely
***note: can also be thought of as “divisive gain”
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Cross-validation
“Predictive power”: the fraction of the variance of the observed
  current that is explainable (”explainable variance”)

Models
LN-H: LN model fit to
          HC only
LN-L: LN model fit to
          LC only
LN-HL: LN model fit to
          all data (HC+LC)
MS: multiplicative supp.
          model (HC+LC)
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Low luminance models have same nonlinearities
Turning down the mean luminance (from 
44,000 to 2,200 R*/cone/sec) shifts initial pro-
cessing in the retina from cone-only to a mix-
ture of rods and cones. Rod contributions 
reach the ganglion cell via the cone bipolar 
synapses.

Contrast gain in ON-Alpha cells increases (i.e., low contrast 
gain increases) in the low luminance condition. This is also pre-
dicted by the MS models.
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Multiplicative suppression in ON-OFF cells
ON-OFF cells are not easily characterized using linear analyses [12]. The nonlinear modeling ap-
proach trivially extends to such neurons, as shown with an example ON-OFF current recording.
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[Voltage-clamp at 0 mV]

Multiplicative suppression computation
In the multiplicative suppression model, excitation can be much stronger, but typically suppressed. This 
allows for strong excitatory amplication, but efficiently, because excitatory transmitter is not re-
leased when suppressed. 
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