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Motivation
The middle temporal visual area (MT) processes 
visual motion [2]. Although simplistic motion stimuli 
are commonly used to characterize MT response 
properties, they likely omit elements of natural visual 
environments important for higher-level processing. 
As a result, modeling based on these stimuli can fail 
to detect elements of MT processing important for 
processing natural motion patterns.

Methods

6. What selectivity could nonlinearity impart 
in naturalistic contexts?
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Conclusions:
1. MT inputs are rectified, resulting in distinct excitation- and 
inhibition-like terms

2. “Inhibition” is also direction-tuned and usually have different
spatial profile than excitation

3. Nonlinearity could enhance selectivity to complex motion 
features and improves reconstruction of 3D velocity

1. Diversity of excitation and inhibition

- About half of the neurons have opponent inhibition
- Diverse spatial foot prints have been found (see below)

Continuous Optic Flow Stimuli

Evolution of each optic flow component is independent low-passed 
Gaussian noise. A circular aperture is moving around slowly to explore 
the spatial profile of MT receptive field.

Single-unit extracellular recordings were made in area MT in an awake
macaque during a simple fixation task (e.g., see [5]).

Measured Spike Train:

Model validation

Data is divided into 10 sec segments, 20% of usable data is set 
aside for cross-validation (the rest used to fit the model)
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5. Nonlinearities imp rove performanc e 
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-Good performance of LN model
-Additional nonlinearity gives only minor improvement
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2. Antagonistic Surround Inhibition

-LN model fails to capture the surround effect
-These neurons are size-tuned
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Non-overlapping Opponent Inhibition

-LN model captures the preferred direction, but performs much 
worse than GNM.
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4. Orthogonal Inhibition

-LN model fails to describe neuron response
-GNM finds non-overlapping orthogonal inhibition

Overlapping
Opponent Inhibition

Antagonistic Inhibition Orthogonal Inhibition 

3. Motion OpponencyModeling Framework:
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=> Nonlinearites in MT model are inherited, it performs integration of inputs
=> Distinct excitation and Inhibition through rectified direction tuning
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“V1”-Processing

v · k = cos( �� )

[v(x,t ), � (x,t )]

How does MT response to complex motion patterns?
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Relationship to texture based models?

We purposefully used a stimulus without “texture” to disambiguate the motion 
signal at a given location, although plan to move to hybrid textured stimuli in 
order to compare with another recent study that used motion-enhanced natu-
ral movies [6], as well as the issue of pattern/component proceesing [8].

General Model Form:

e.g., y-translation

rotation

y-shear

In this study, we design a range of complex motion stimuli where 
motion (conveyed by a moving dot field) is determined by continu-
ously varying combinations of optic flow components. To character-
ize the complex nonlinear relationship between these stimuli and 
MT neuronal response, we use a hierarchical nonlinear modeling 
framework [6,11] that is fit to recorded spike trains using maximum 
likelihood estimation techniques [2,4,7].
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Relationship with “surround suppression”?

A large portion of MT neurons are size tuned [1], although our models cannot 
currently capture these effects with current data, likely because of a fixed ap-
erture size. We hypothesize that size tuning and commonly observed surround 
suppression is a separate mechanism, and can be separately incoporated into 
the model as an  additional non-selective inhibition related to aperture size.

To test (preliminarily), we used two different aperture sizes for one experiment: 
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8. Effects of Eye Movements
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Normal Saccade => Omit from data
Drift => Negligible effect (too slow)
Microsaccades => Fast & Common!

Microsaccade-Triggered Averages:

t (sec)
0 0.2 0.4

0

2

3

Avg Firing Rate: 4.2 Hz

t (sec)
0 0.2 0.4

0

2

4

t (sec)
0 0.2 0.4

0

2

4

6

t (sec)

D
ire

ct
io

n 
(D

eg
)

0 0.2 0.4

0

0

20

Avg Firing Rate: 13.2 HzAvg Firing Rate: 14.1 HzAvg Firing Rate: 14.3 Hz

-Effects of microsaccades modeled as a separate input and directly fit
-Negligible effect on stimulus processing! (20Hz=>1spk/50ms)
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An MT RF?
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Since MT RFs are much larger than V1, we modeled each grid point (~2 deg) 
as a V1-like input to MT.
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7. Population Decoding of 3D Velocity
3D velocity
(Vx, Vy, Vz)
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MT neuron population is generated by 
cloning models from all 40 cells across 
space (5x5 grid at 3 Deg spacing) and 
direction (rotated by every 90 Deg)
  

Vx Vy Vz
0

2

4

6

8

10

12

R
M

S
E

 (
de

g/
se

c)

Linear
Nonlinear

Nonlinear model has better 
reconstruction at all three dimensions!

Motion direction is uniformly distributed
Speed is randomly sampled in the range
of 15 Deg/s to 30 Deg/s
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Stimulus preceding GNM>LN events 
contains more complex (non-translational) 
optic flow components

GNM outperforms the LN model for most neurons (35/40), while
the improvement differs for each cell group

For all neurons, model performance is mea-
sured using the cross-validated log-
likelihood, which can be applied to single 
trials. To demonstrate it reflects more con-
ventional measures, for a subset of neurons 
many repeats were recorded and the fraction 
of explainable variance (predictive power) is 
also computed (example shown Reconstruction Accuracy: 

Observer

Linear decoder is fitted to deduce
3D velocity based on output of
the MT population
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