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Motivation Modeling Framework: 3. Motion Opponency 6. What selectivity could nonlinearity impart

| o Overlanpina Opponent Inhibition : P > 1. MT Iinputs are rectified, resulting in distinct excitation- and
The middle temporal visual area (MT) processes Since MT RFs are much larger than V1, we modeled each grid point (~2 deg) PPING =PP N naturalistic contexts inhibition-like terms
visual motion [2]. Although simplistic motion stimull as a V1-like input to MT.
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In this study, we design a range of complex motion stimuli where
motion (conveyed by a moving dot field) is determined by continu- Jempora Linear Exc Inh Overlap
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MT neuronal response, we use a hierarchical nonlinear modeling nonlinearity gpeecsssssnes IR . | -
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General Model Form: -LN model captures the preferred direction, but performs much -Effects of microsaccades modeled as a separate input and directly fit
r(t) = F[» Kp(m)®Y» w®(@)V1¥(z,t—7)+ ...+ b] worse than GNM. -Negligible effect on stimulus processing! (20Hz=>1spk/50ms)
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vy => Distinct excitation and Inhibition through rectified direction tuning

A large portion of MT neurons are size tuned [1], although our models cannot
currently capture these effects with current data, likely because of a fixed ap-
& - .| - | erture size. We hypothesize that size tuning and commonly observed surround

1 Diversity of excitation and inhibition . . . . . suppression is a separate mechanism, and can be separately incoporated into
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Measured,;Spike Jyain: . rans - exp Tot shearl  shear the model as an additional non-selective inhibition related to aperture size.
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Evolution of each optic flow component is independent low-passed - -LN model fails to describe neuron response 3D velocity
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Single-unit extracellular recordings were made in area MT In an awake | | 5 Nonlinearities |mp rove perfo rmanc e Inh

macadgue during a simple fixation task (e.g., see [5]). _ _
. | | . MT neuron population is generated by RelathnShlp to texture based models?
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o St o See O | Antagonistic Inhibition Orthogonal Inhibition ' * 4 4 - direction (rotated by every 90 Deg) signal at a given location, although plan to move to hybrid textured stimuli in
Data is divided into 10 sec segments, 20% of usable data Is set | | Observer order to compare with another recent study that used motion-enhanced natu-
aside for cross-validation (the rest used to fit the model) ral movies [6], as well as the issue of pattern/component proceesing [8].
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