
Introduction

Computational bar codes as a means to characterize
neural function at the population level

Model infers spatiotemporal properties of 
magno- and parvocellular LGN pathways

Computational core across
multiple datasets

Biologically constrained deep neural networks to parse visual computations 
in the primary visual cortex

Laboratory of
Sensorimotor Research

Matthew Jacobsen1, Jacob L Yates3, Bevil R. Conway2*, Daniel A. Butts1*

1Program in Neuroscience and Cognitive Science, University of Maryland, 2Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health,  
3Herbert Wertheim School of Optometry and Vision Science, UC Berkeley, *co-PIs

Our understanding of how computations are implemented by visual circuits is still limited by our 
ability to characterize the complex nonlinearities present in the system. Deep convolutional neural 
networks (CNNs) have been able to capture the nonlinear computations represented in neural re-
sponses in complex stimulus contexts, but thus far there has been no clear way to relate their 
ability to predict neural responses to an understanding of the function of neurons they successful-
ly model.

Spatial filters in second layer
have RFs resembling those found in V1

    

Functionally-inspired model architecure
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Stimulus is spatially con-
volved over by bottle-
necked initial layer.

Output of this processed by 
filters that are rotated with 
6 different orientations 
(30 degree increments) [see 4]

Space and orientation di-
mensions are preserved 
in each subsequent layer 
(3-d convolutions)

Model is fit to predict the observed 
spike times of all recorded neurons 
across experiments.
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Model architecture inspired by the functional anatomy of 
the early visual system:

Conclusions
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Fitting a general “core” model using multiple experiments improves performance
by learning generalizable computations shared across neurons.

Biological constraints yield CNN internal units with classical properties of LGN 
inputs to V1 (M- and P-cells)

Biologically constrained CNNs also derive Push-Pull combinations of LGN inputs 
onto V1 input layers

Computational barcodes provide a means to characterize more complicated 
processing across V1 neuronsNetwork operates as follows:

We constrained the �rst layer of the CNN to have a smaller number of subunits. 
Choosing exactly four subunits resulted in extremely consistent �ts, compared 
with 3 and 5 subunits (shown across di�erent model initializations).

P-on subunit

Magnocellular (M-cell)
example from [6]

Parvocellular (P-cell)
example from [6]

Magnocellular-like subunit

Subunits in the second CNN layer integrated spatially over the 4-subunit 
types from the �rst layer. This resulted in 4 spatial maps for each layer-2 
subunit, specifying how it combines ON and OFF, and M- and P-like, inputs.

P-o� subunit M-o� subunit

M-on subunit

All layer-2 �lters

First layer bottleneck inspired by retina/LGN
Spatial convolutions to capture similarity in computation across position
Orientation convolutions after the �rst layer to capture the similarity in    
computation across orientations within V1
Units in the network obey Dales Rule: only excitatory or inhibitory
“Computational sca�old” to model neurons recorded across cortical layer

The prediction for each neuron re-
sponse is readout at a given spatial 
position [3], sampling sparsely from 
particular locations within the  three V1 
layers.
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The resulting �lters were not oriented, and 
resembled the spatiotemporal properties of 
parvocellular (monophasic and smaller) and 
magnocellular (biphasic and larger) LGN 
neurons [8].

The resemblance of the input layer of our CNN to known LGN 
pathways facilitates interpretability in the next layer of the CNN.

P-on M-on M-offP-off

Subunit 0

Subunit 1

Subunit 4

Subunit 10

V1 simple cells can reconstruct linear response proper-
ties by combining ON-excitation with OFF-inhibition (and 
vice versa) [7].
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Model predicts neuron’s 
receptive field well

Cell 0 Cell 1 Cell 2 Cell 3 Cell 4 Cell 5

Observed
Responses

Predicted
Responses

Spike-triggered averages
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Responses from V1 recorded in day-long
experiments. Experiments combined together 
to fit core model with large numbers of cells.

Fitting multiple experiments at 
once improves performance for 
each experiment, suggesting 
the CNN learns common V1 
computations that generalize 
across experiments [9].
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Maximum a posteriori (MAP) estimation of CNN parameters [2]:
Convolutional neural networks (CNNs) of various configurations were fit using using PyTorch. Parameters were 
fit using stochastic gradient descent (the AdamW optimizer to maximize the regularization-penalized population 
Poisson log-likelihood (per spike), given by 

where           is the model predicted firing rate, and        = 1 for all time points where there is recorded data for 
neuron i, and zero otherwise. Our network consisted of 4 convolutional layers consisting of filters, batch-norm, 
and a ReLU, and followed by a final “readout” layer with a softplus activation function. The readout layer sam-
pled from a single spatial position in the network for each cell [3]. We constrained the readout weights to be posi-
tive, and half of the units in each level were made to be “inhibitory” by multiplying their output by -1.

ri(t ) id (t)

− (regularization penalties)*

Stimuli 

Data organization

We presented color-cloud stimuli, which is spatiotemporal white noise updated at 60 Hz (with a 
120 Hz monitor refresh), with each frame band-passed in the range of 6-30 cycles per degree to 
optimally drive foveal V1 responses. The stimulus was constructed in DKL space, with an       
uncorrelated stimulus frame in luminance, L-M, and S-dimensions, but here we only considered 
the luminance dimension, which primarily drove V1 responses. Pixel size = 1 arcmin ~ 1 cone. 

Model-based eye
tracking

Although the animal was fixating, small shifts in eye position due to fixational eye movements 
required shifting the stimulus fed into the model. We inferred these eye position shifts using a 
model-based eye tracking procedure based on neural activity, as previously described [1].

Methods
Recordings were made in primary visual cortex (V1) f r o m  a n  awake macaque using 
a 96-electrode Utah array embedded in foveal V1, while the monkey passively fixated over 
4-sec trials for a juice reward, as previously described [1]. Our CNNs were fit using  data from four 
experiments, which yielded 598 units (with 306 single units).
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Electrophysiology

Utah array
96 contacts,10x10, 
400 μm spacing 

V1

*
* *

fovea

Animal passively viewed color cloud stimuli 
while we recorded from foveal V1 using  
via a chronically implanted Utah array.

60 Hz

Retina/LGN
bottleneck

V1: Deep nonlinear
Spatial and orientation convolutions

How can we use CNNs to understand neural function?
Here, we exploit known facts of the visual system to constrain build an “interpretable” CNN, and 
present strategies to characterize the complex computations performed over the population of re-
corded neurons in primary visual cortex (V1). 

Anatomically/physiologically constrained 
Convolutional Neural Network (CNN)

The visual pathway

adapted from Sanger and Wallisch
(Intro to Psychology)
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We represent each neuron’s computational barcode across orientations. Using a 
form of sparseness regularization (similar to L1), neurons typically concentrate their 
filter connectivity at orientations that best matches their preferred orientation.

Cell barcode orientation preference matches the orientation identified by its receptive field. 

Validation: functional similarities expected for neurons recorded on the same chron-
ically implanted electrode (both within a given experiment, and over multiple days)

Example neuron
GQM filters

Linear (L)
filter

Quadratic
filter 1 (Q1)

Quadratic
filter 2 (Q2)

To determine orientation 
tuning independent of the 
CNN (and not requiring the 
cell to be linear), we use 
the Generalized Quadratic 
Model (GQM) [10]: an 
LNLN cascade model that 
has one linear and two qua-
dratic components.

A metric for CNN interpretability based on barcode similarity?

[1] McFarland JM, Bondy AG, Cumming BG, Butts DA (2014) High-resolution eye tracking using V1 neuron activity. Nature Communications
[2] Butts DA (2019) Data-Driven Approaches to Understanding Visual Neuron Activity. Annual Review of Vision Science
[3] Sinz FH et al (2018) Stimulus domain transfer in recurrent models for large scale cortical population prediction on video. Adv Neural Info Proc Sys
[4] Ecker AS et al (2019) A rotation-equivariant convolutional neural network model of primary visual cortex. ICLR arXiv.org.
[5] Ustyuzhaninov I et al (2022) Digital twin reveals combinatorial code of non-linear computations in the mouse primary visual cortex. BioRxiv
[6] Reid RC, Shapley RM (2002). Space and Time Maps of Cone Photoreceptor Signals in Macaque Lateral Geniculate Nucleus. Journal of Neuroscience
[7] Hirsch JA, Alonso J-M, Reid RC, Martinez LM (1998) Synaptic integration in striate cortical simple cells. Journal of Neuroscience
[8] Croner LJ, Kaplan E (1995). Receptive fields of P and M ganglion cells across the primate retina. Vision research
[9] Lurz K-K et al. Generalization in data-driven models of primary visual cortex. BioRxiv
[10] Park IM, Pillow JW. 2011. Bayesian spike-triggered covariance analysis. Adv. Neural Inf. Proc Sys

Exc

Inh

0

Computational barcode (Electrode 10, Cell 5)

Filter number

0

2

4

6

8

10

Q1

Q2

L

Q1

Q2

L

Q1

Q2

L

Barcodes for electrode 10 across units & experiments
 (at its preferred orientation of 90°)

Barcodes for electrode 24 across units & experiments GQMs from the same probe

Barcodes for electrode 30 across units & experiments
 (at its preferred orientation of 60°)
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We compared performance for the CNN �t to 4 
experiments at once, compared with to the 
same model �t on each experiment separately. 
We show the outcomes for 5 initializations of 
each model (single vs. shared). 
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Cell similarity between pairs

Here we used a “barcode” similarity metric based on orientation-per-
muated cosine similarity.

An interpretable CNN will have barcodes:
=> that are different enough to capture large range of function
=> but similar enough to identify neurons as “similar” 
     that have similar functional properties
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