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Goal: evaluate the role of hierarchical inference [1, 2] in motion perception

Simulation: Retinal Optic
Flow Learning (ROFL)

Architecture: compressed
Nouveau VAE [4] (cNVAE)

Result #1: Functional specialization
emerges in the cNVAE latent space 

Result #2: in silico “lesion” experiments
confirm functional specialization in the cNVAE

Result #3: cNVAE “untangles” ground truth factors

Result #4: cNVAE “disentangles”
the ground truth factors (g)

Bonus: disentanglement is
in the eyes of the beholder

Evaluating models based on
their alignment to the brain 

Result #5: cNVAE representations are more aligned
to the brain compared to non-hierarchical VAE

Conclusions and future work
• We introduced a new synthetic data framework (ROFL) and a new hierarchical VAE architecture (cNVAE).

• Results show that “hierarchical latent structure” enhances the learned representations in multiple ways:
1. It improves the linear decodability of ground truth factors and does so in a sparse and disentangled manner.

2. It promotes sparsity in latent-to-neuron relationships, thus increasing brain alignment and interpretability.

• Future work: study the geometry of representations to further elucidate the role of hierarchical inference.

• We also need a better (more objective) definition of “disentanglement” (see the Bonus point above).

• Overall, our work demonstrates the power of “synthetic data framework” in representation learning.
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1. Extract representations

2. Ridge regression

3. Report (Pearson R)

This latent encodes magnitude of self-motion velocity 

Cartesian or polar? Which option is the “correct”
choice of parametrizing ground truth factors?

Cartesian: low
disentang score

Polar: high
disentang score
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Both hierarchical and non-hierarchical models predict MT responses well:

Does this mean both models are equally aligned with the brain?
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We consider “sparsity of latent-to-neuron relationships”
as a complementary measure of brain alignment [9]:
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MT = a neuron from the Middle Temporal area

Results across all
neurons (n = 141):
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We use the “DCI”
framework [6]

Can we linearly decode ground truth factors from model latents?

The cNVAE achieves
“optic flow parsing”

Linear
regression

Untangling = linear decodability [5]

1. Push sample
  through the network

2. Zero-out a given
    set of connections

3. Examine the
    reconstructed output 

“top” “mid” “bottom”

Input sample,

Mutual Info (MI) matrix between
ground truth and latent variables :

cN
VA

E
 (hierarchical)

VA
E

 (non-hierarchical)

What is the information content of the learned latent codes?

residual conv layer

hierarchical latent group

“sampler” layer (conv)

“expand” layer (deconv)

feature combination

trainable parameter
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Setup: Example
flow fields:

Independent
ground truth
factors:

Fixation point (+2)

3D object position (+3)

3D object velocity (+3)

3D self-motion velocity (+3)

Static (“snapshot”)
velocity field:

Data generation:

ROFL

+ We introduce a new hierarchical variational autoencoder (VAE) model

= +

+ We introduce a new synthetic data framework with ground truth

(i) Model architecture (hierarchical vs. non-hierarchical)

(ii) Loss function (probabilistic inference vs. reconstruction)

“Perception as unconscious inference” [3]

We evalute
the role of :

retinal optic flow self-motion (global) object motion (local)


